• LED显示屏价格的影响因素,你知道吗?

    LED显示屏价格的影响因素,你知道吗?

    你知道是什么再影响LED显示屏价格嘛?随着LED显示屏的应用日益广泛,各种LED显示屏厂家如雨后春笋般的冒出来,生产的LED显示屏价格也是高低不同,有些LED显示屏生产厂家的价格相差有时候会很大。其实,熟悉LED显示屏行业的人都知道很多因素影响着LED显示屏的价格,现在小编将从以下三个方面来解释影响LED显示屏价格的主要因素: 1、原材料IC芯片 首先就拿发光芯片来讲,可分为进口材料和国产材料。每种发光芯片各不相同,各有其优缺点,美国和日本芯片,因其一直以来掌握着核心技术,在类似垄断的背景下,美、日芯片价格居高不下。台湾和内地芯片价格相对比较便宜,但其性能相比美、日芯片,还是有一定的差距。如果LED显示屏是用在比较重要的场合,我们还是推荐使用进口的材料比较好;除了LED芯片,另外影响LED显示屏价格的主要因素是LED驱动IC,不过如果我是客户的话我宁愿选择比较好的驱动IC,因为它虽然价格高一点,但是驱动IC是影响LED显示屏质量和寿命的非常重要的因素,做LED全彩显示屏的时候一定要用恒压恒流的驱动IC;其他方面的材料如电源、箱体、以及制作显示屏的各种配件。 2、产品的规格 我们这里的产品是指常规的产品,从颜色上LED显示屏可分为单色、双色、全彩,按控制或使用方式分同步和异步,从使用环境上可分为户内、户外半户外,每一种规格的LED屏幕价格都是不一样的,户内全彩又分表贴全彩、表贴三合一全彩、点阵全彩,户外全彩分为1R1G1B(一般为高密度的,如:PH10、PH12)、2R1G1B(一般为高密度的,如PH16、PH20等)。 不同规格所需的配置也不同,所以价格也会不同。 3、主要配套系统 编辑系统:编辑计算机、编辑软件、视频压缩卡; 系统配件:接收卡、发送卡、转接卡; 播放系统:控制电脑、多媒体卡或者显卡、播放软件; 保护系统:配电系统、散热系统、避雷系统; 监控系统:传感器+监控软件; 音响系统:扩音机+音箱; 视频输入设备:录像机、DVD/VCD机、闭路电视; 图文输入:数码相机和扫描仪; 以上配件与设备除了系统配件与播放系统外,其余的设置都可以根据自己的情况自由选择。由于品牌与采购渠道等因素也会影响其LED显示屏的价格。以上就是LED显示屏价格的影响因素,希望能给大家帮助。

    时间:2020-07-31 关键词: 价格 LED 显示屏

  • LED显示屏的分辨方法,你知道吗?

    LED显示屏的分辨方法,你知道吗?

    你知道LED显示屏的分辨方法吗?它有什么特点?为了满足客户的需要,生产厂家只能加大力度在LED显示屏制作上更精细和细心的去做好每一步,必须设计出更高可靠、更实用的LED显示屏。基于目前国内技术的发展,对于在LED显示屏行业标准进行可靠性测定试验,实际上很难实现MTBF不低于10000小时这一可靠性要求,更难满足高可靠LED显示屏要求。 不过要做到具有高可靠的LED显示屏,必须要在LED显示屏材料上有很大提高,而在设计方面要求也要时尚、合理、先进。 下面我们就先从LED显示屏产品材料上详细说明: 首先从LED发光管说: LED发光管具体应要实现以下几个关键: 1.稳定性好,离散性小。 2.指标高,衰减幅度小,耐压能力强。 3. 亮度、波长、角度一致性高。 4. 配光效果佳:完美的配光曲线。 5.可抵御温差、潮湿和紫外线,适用于户外环境。 其次是在箱体上: 整体采用钢板或铝材,采用开门结构。必须要充分考虑散热措施和防水措施两方面。 还有在接插件上: 这个也是重要的链接器件,应采用优质接插件产品,以保证接插件的纯金镀层的厚度,保持最佳的电气连接性能。保证系统在高温、高湿环境下良好的电气连接性能,可以使系统长期稳定可靠地运行。 然后是在开关电源上: LED显示屏供电采用通过认证的著名品牌开关稳压电源模块。对于所有的开关电源都经过严格的压力测试、筛选。保证长期稳定可靠要求。 最后是在电路板上和驱动芯片ic器件上: 对于电路板应采用阻燃环氧板材,设计布局合理,走线规范,满足电磁兼容性和电路稳定性的要求。在大温度范围内,保持高精度的恒定电流输出和高可靠性,能使显示屏的均匀性和可靠性显著改善。显示系统主要材料应通过CE、FCC、UL、CCC等认证。以上所诉就是LED显示屏在产品材料上所具有的高可靠的要求,只有这样LED显示屏在品质上越来越提高,才能达到客户的满意度。 也应从上诉5点来选择好LED产品。 做到在LED显示屏产品上符合高可靠的要求,生产厂家还需要发更多时间,更多精力去往这方面发展,我相信,未来的LED显示屏行业技术将越来越精湛,发展将无可限量!以上就是LED显示屏的分辨方法解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 显示屏 分辨

  • 你了解大功率LED封装有哪些技术吗?

    你了解大功率LED封装有哪些技术吗?

    什么是大功率LED封装?他有什么特点?大功率LED封装主要涉及光、热、电、结构与工艺等方面,如图1所示。这些因素彼此既相互独立,又相互影响。其中,光是LED封装的目的,热是关键,电、结构与工艺是手段,而性能是封装水平的具体体现。从工艺兼容性及降低生产成本而言,LED封装设计应与芯片设计同时进行,即芯片设计时就应该考虑到封装结构和工艺。否则,等芯片制造完成后,可能由于封装的需要对芯片结构进行调整,从而延长了产品研发周期和工艺成本,有时甚至不可能。 具体而言,大功率LED封装的关键技术包括: 一、低热阻封装工艺 对于现有的LED光效水平而言,由于输入电能的80%左右转变成为热量,且LED芯片面积小,因此,芯片散热是LED封装必须解决的关键问题。主要包括芯片布置、封装材料选择(基板材料、热界面材料)与工艺、热沉设计等。 LED封装热阻主要包括材料(散热基板和热沉结构)内部热阻和界面热阻。散热基板的作用就是吸收芯片产生的热量,并传导到热沉上,实现与外界的热交换。常用的散热基板材料包括硅、金属(如铝,铜)、陶瓷(如 ,AlN,SiC)和复合材料等。如Nichia公司的第三代LED采用CuW做衬底,将1mm芯片倒装在CuW衬底上,降低了封装热阻,提高了发光功率和效率;Lamina Ceramics公司则研制了低温共烧陶瓷金属基板,如图2(a),并开发了相应的LED封装技术。该技术首先制备出适于共晶焊的大功率LED芯片和相应的陶瓷基板,然后将LED芯片与基板直接焊接在一起。由于该基板上集成了共晶焊层、静电保护电路、驱动电路及控制补偿电路,不仅结构简单,而且由于材料热导率高,热界面少,大大提高了散热性能,为大功率LED阵列封装提出了解决方案。德国Curmilk公司研制的高导热性覆铜陶瓷板,由陶瓷基板(AlN或 )和导电层(Cu)在高温高压下烧结而成,没有使用黏结剂,因此导热性能好、强度高、绝缘性强,如图2(b)所示。其中氮化铝(AlN)的热导率为160W/mk,热膨胀系数为 (与硅的热膨胀系数相当),从而降低了封装热应力。 研究表明,封装界面对热阻影响也很大,如果不能正确处理界面,就难以获得良好的散热效果。例如,室温下接触良好的界面在高温下可能存在界面间隙,基板的翘曲也可能会影响键合和局部的散热。改善LED封装的关键在于减少界面和界面接触热阻,增强散热。因此,芯片和散热基板间的热界面材料(TIM)选择十分重要。LED封装常用的TIM为导电胶和导热胶,由于热导率较低,一般为0、5-2、5W/mK,致使界面热阻很高。而采用低温或共晶焊料、焊膏或者内掺纳米颗粒的导电胶作为热界面材料,可大大降低界面热阻。 二、高取光率封装结构与工艺 在LED使用过程中,辐射复合产生的光子在向外发射时产生的损失,主要包括三个方面:芯片内部结构缺陷以及材料的吸收;光子在出射界面由于折射率差引起的反射损失;以及由于入射角大于全反射临界角而引起的全反射损失。因此,很多光线无法从芯片中出射到外部。通过在芯片表面涂覆一层折射率相对较高的透明胶层(灌封胶),由于该胶层处于芯片和空气之间,从而有效减少了光子在界面的损失,提高了取光效率。此外,灌封胶的作用还包括对芯片进行机械保护,应力释放,并作为一种光导结构。因此,要求其透光率高,折射率高,热稳定性好,流动性好,易于喷涂。为提高LED封装的可靠性,还要求灌封胶具有低吸湿性、低应力、耐老化等特性。目前常用的灌封胶包括环氧树脂和硅胶。硅胶由于具有透光率高,折射率大,热稳定性好,应力小,吸湿性低等特点,明显优于环氧树脂,在大功率LED封装中得到广泛应用,但成本较高。研究表明,提高硅胶折射率可有效减少折射率物理屏障带来的光子损失,提高外量子效率,但硅胶性能受环境温度影响较大。随着温度升高,硅胶内部的热应力加大,导致硅胶的折射率降低,从而影响LED光效和光强分布。 荧光粉的作用在于光色复合,形成白光。其特性主要包括粒度、形状、发光效率、转换效率、稳定性(热和化学)等,其中,发光效率和转换效率是关键。研究表明,随着温度上升,荧光粉量子效率降低,出光减少,辐射波长也会发生变化,从而引起白光LED色温、色度的变化,较高的温度还会加速荧光粉的老化。原因在于荧光粉涂层是由环氧或硅胶与荧光粉调配而成,散热性能较差,当受到紫光或紫外光的辐射时,易发生温度猝灭和老化,使发光效率降低。此外,高温下灌封胶和荧光粉的热稳定性也存在问题。由于常用荧光粉尺寸在1um以上,折射率大于或等于1、85,而硅胶折射率一般在1、5左右。由于两者间折射率的不匹配,以及荧光粉颗粒尺寸远大于光散射极限(30nm),因而在荧光粉颗粒表面存在光散射,降低了出光效率。通过在硅胶中掺入纳米荧光粉,可使折射率提高到1、8以上,降低光散射,提高LED出光效率(10%-20%),并能有效改善光色质量。 传统的荧光粉涂敷方式是将荧光粉与灌封胶混合,然后点涂在芯片上。由于无法对荧光粉的涂敷厚度和形状进行精确控制,导致出射光色彩不一致,出现偏蓝光或者偏黄光。而Lumileds公司开发的保形涂层(Conformal coating)技术可实现荧光粉的均匀涂覆,保障了光色的均匀性,如图3(b)。但研究表明,当荧光粉直接涂覆在芯片表面时,由于光散射的存在,出光效率较低。有鉴于此,美国Rensselaer 研究所提出了一种光子散射萃取工艺(Scattered Photon Extraction method,SPE),通过在芯片表面布置一个聚焦透镜,并将含荧光粉的玻璃片置于距芯片一定位置,不仅提高了器件可靠性,而且大大提高了光效(60%),如图3(c)。 总体而言,为提高LED的出光效率和可靠性,封装胶层有逐渐被高折射率透明玻璃或微晶玻璃等取代的趋势,通过将荧光粉内掺或外涂于玻璃表面,不仅提高了荧光粉的均匀度,而且提高了封装效率。此外,减少LED出光方向的光学界面数,也是提高出光效率的有效措施。 三、阵列封装与系统集成技术 经过40多年的发展,LED封装技术和结构先后经历了四个阶段,如图4所示。 1、引脚式(Lamp)LED封装 引脚式封装就是常用的 3-5mm封装结构。一般用于电流较小(20-30mA),功率较低(小于0、1W)的LED封装。主要用于仪表显示或指示,大规模集成时也可作为显示屏。其缺点在于封装热阻较大(一般高于100K/W),寿命较短。 2、表面组装(贴片)式(SMT-LED)封装 表面组装技术(SMT)是一种可以直接将封装好的器件贴、焊到PCB表面指定位置上的一种封装技术。具体而言,就是用特定的工具或设备将芯片引脚对准预先涂覆了粘接剂和焊膏的焊盘图形上,然后直接贴装到未钻安装孔的PCB 表面上,经过波峰焊或再流焊后,使器件和电路之间建立可靠的机械和电气连接。SMT技术具有可靠性高、高频特性好、易于实现自动化等优点,是电子行业最流行的一种封装技术和工艺。 3、板上芯片直装式(COB)LED封装 COB是Chip On Board(板上芯片直装)的英文缩写,是一种通过粘胶剂或焊料将LED芯片直接粘贴到PCB板上,再通过引线键合实现芯片与PCB板间电互连的封装技术。PCB板可以是低成本的FR-4材料(玻璃纤维增强的环氧树脂),也可以是高热导的金属基或陶瓷基复合材料(如铝基板或覆铜陶瓷基板等)。而引线键合可采用高温下的热超声键合(金丝球焊)和常温下的超声波键合(铝劈刀焊接)。COB技术主要用于大功率多芯片阵列的LED封装,同SMT相比,不仅大大提高了封装功率密度,而且降低了封装热阻(一般为6-12W/m、K)。 4、系统封装式(SiP)LED封装 SiP(System in Package)是近几年来为适应整机的便携式发展和系统小型化的要求,在系统芯片System on Chip(SOC)基础上发展起来的一种新型封装集成方式。对SiP-LED而言,不仅可以在一个封装内组装多个发光芯片,还可以将各种不同类型的器件(如电源、控制电路、光学微结构、传感器等)集成在一起,构建成一个更为复杂的、完整的系统。同其他封装结构相比,SiP具有工艺兼容性好(可利用已有的电子封装材料和工艺),集成度高,成本低,可提供更多新功能,易于分块测试,开发周期短等优点。按照技术类型不同,SiP可分为四种:芯片层叠型,模组型,MCM型和三维(3D)封装型。 目前,高亮度LED器件要代替白炽灯以及高压汞灯,必须提高总的光通量,或者说可以利用的光通量。而光通量的增加可以通过提高集成度、加大电流密度、使用大尺寸芯片等措施来实现。而这些都会增加LED的功率密度,如散热不良,将导致LED芯片的结温升高,从而直接影响LED器件的性能(如发光效率降低、出射光发生红移,寿命降低等)。多芯片阵列封装是目前获得高光通量的一个最可行的方案,但是LED阵列封装的密度受限于价格、可用的空间、电气连接,特别是散热等问题。由于发光芯片的高密度集成,散热基板上的温度很高,必须采用有效的热沉结构和合适的封装工艺。常用的热沉结构分为被动和主动散热。被动散热一般选用具有高肋化系数的翅片,通过翅片和空气间的自然对流将热量耗散到环境中。该方案结构简单,可靠性高,但由于自然对流换热系数较低,只适合于功率密度较低,集成度不高的情况。对于大功率LED封装,则必须采用主动散热,如翅片+风扇、热管、液体强迫对流、微通道致冷、相变致冷等。 在系统集成方面,台湾新强光电公司采用系统封装技术(SiP), 并通过翅片+热管的方式搭配高效能散热模块,研制出了72W、80W的高亮度白光LED光源,如图5(a)。由于封装热阻较低(4、38℃/W),当环境温度为25℃时,LED结温控制在60℃以下,从而确保了LED的使用寿命和良好的发光性能。而华中科技大学则采用COB封装和微喷主动散热技术,封装出了220W和1500W的超大功率LED白光光源,如图5(b)。 图5 四、封装大生产技术 晶片键合(Wafer bonding)技术是指芯片结构和电路的制作、封装都在晶片(Wafer)上进行,封装完成后再进行切割,形成单个的芯片(Chip);与之相对应的芯片键合(Die bonding)是指芯片结构和电路在晶片上完成后,即进行切割形成芯片(Die),然后对单个芯片进行封装(类似现在的LED封装工艺),如图6所示。很明显,晶片键合封装的效率和质量更高。由于封装费用在LED器件制造成本中占了很大比例,因此,改变现有的LED封装形式(从芯片键合到晶片键合),将大大降低封装制造成本。此外,晶片键合封装还可以提高LED器件生产的洁净度,防止键合前的划片、分片工艺对器件结构的破坏,提高封装成品率和可靠性,因而是一种降低封装成本的有效手段。 图6 此外,对于大功率LED封装,必须在芯片设计和封装设计过程中,尽可能采用工艺较少的封装形式(Package-less Packaging),同时简化封装结构,尽可能减少热学和光学界面数,以降低封装热阻,提高出光效率。 五、封装可靠性测试与评估 LED器件的失效模式主要包括电失效(如短路或断路)、光失效(如高温导致的灌封胶黄化、光学性能劣化等)和机械失效(如引线断裂,脱焊等),而这些因素都与封装结构和工艺有关。LED的使用寿命以平均失效时间(MTTF)来定义,对于照明用途,一般指LED的输出光通量衰减为初始的70%(对显示用途一般定义为初始值的50%)的使用时间。由于LED寿命长,通常采取加速环境试验的方法进行可靠性测试与*估。 测试内容主要包括高温储存(100℃,1000h)、低温储存(-55℃,1000h)、高温高湿(85℃/85%,1000h)、高低温循环(85℃~-55℃)、热冲击、耐腐蚀性、抗溶性、机械冲击等。然而,加速环境试验只是问题的一个方面,对LED寿命的预测机理和方法的研究仍是有待研究的难题。以上就是大功率LED封装解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 封装 大功率

  • 你知道LED电源可靠性的检测方法吗?

    你知道LED电源可靠性的检测方法吗?

    什么是LED电源可靠性?应该如何检测?1、描述输入电压影响输出电压的几个指标形式 (1)稳压系数 ①绝对稳压系数K 表示负载不变时,稳压电源输出直流电压变化量△Uo与输入电网电压变化量△Ui之比,即K=△Uo/△Ui。 ②相对稳压系数S 表示负载不变时,稳压器输出直流电压Uo的相对变化量△Uo/Uo与输入电网电压Ui的相对变化量△Ui/Ui之比,即S=△Uo/Uo/△Ui/Ui。 (2)电网调整率 表示输入电网电压由额定值变化+/-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 (3)电压稳定度 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo(百分值),称为稳压器的电压稳定度。 2、负载对输出电压影响的几种指标形式 (1)负载调整率(也称电流调整率) 在额定电网电压下,负载电流从零变化到最大值时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 (2)输出电阻(也称等效内阻或内阻) 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为Ro=|△Uo/△IL|Ω。 3、纹波电压的几个指标形式 (1)最大纹波电压 在额定输出电压和负载电流下,输出电压纹波(包括噪声)的绝对值的大小,通常以峰值或有效值表示。 (2)纹波系数Y(%) 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,即Y=Umrs/Uox100%。 (3)纹波电压抑制比 在规定的纹波频率(例如50HZ)下,输入电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即:纹波电压抑制比=Ui~/Uo~。 4、电气安全要求 (1)电源结构的安全要求 ①空间要求 UL、CSA、VDE安全规范强调了在带电部分之间和带电部分与非带电金属部分之间的表面、空间的距离要求。 UL、CSA要求:极间电压大于等于250VAC的高压导体之间,以及高压导体与非带电金属部分之间(这里不包括导线间),无论在表面间还是在空间,均应有0.1吋的距离;VDE要求交流线之间有3mm的徐变或2mm的净空间隙;IEC要求:交流线间有3mm的净空间隙及在交流线与接地导体间的4mm的净空间隙。另外,VDE、IEC要求在电源的输出和输入之间,至少有8mm的空间间距。 ②电介质实验测试方法 打高压:输入与输出、输入和地、输入AC两级之间。 ③漏电流测量 漏电流是流经输入侧地线的电流,在开关电源中主要是通过静噪滤波器的旁路电容器泄露电流。UL、CSA均要求暴露的不带电的金属部分均应与大地相接,漏电流测量是通过将这些部分与大地之间接一个1.5kΩ的电阻,其漏电流应该不大于5毫mA。 VDE允许用1.5kΩ的电阻与150nPF电容并接,并施加1.06倍额定使用电压,对数据处理设备,漏电流应不大于3.5mA,一般是1mA左右。 ④绝缘电阻测试 VDE要求:输入和低电压输出电路之间应有7MΩ的电阻,在可接触到的金属部分和输入之间,应有2MΩ的电阻或加500V直流电压持续1min。 ⑤印制电路板 要求使用UL认证的94V-2材料或更好的材料。 (2)对电源变压器结构的安全要求 ①变压器的绝缘 变压器的绕组使用的铜线应为漆包线,其他金属部分应涂有瓷、漆等绝缘物质。 ②变压器的介电强度 在实验中不应出现绝缘层破裂和飞弧现象。 ③变压器的绝缘电阻 变压器绕组间的绝缘电阻至少为10MΩ,在绕组与磁心、骨架、屏蔽层间施加500伏直流电压,持续1min,不应出现击穿、飞弧现象。 ④变压器湿度电阻 变压器必须在放置于潮湿的环境之后,立即进行绝缘电阻和介电强度实验,并满足要求。潮湿环境一般是:相对湿度为92%(公差为2%),温度稳定在20℃到30℃之间,误差允许1%,需在内放置至少48h之后,立即进行上述实验。此时变压器的本身温度不应该较进入潮湿环境之前测试高出4℃。 ⑤VDE关于变压器温度特性的要求。 ⑥UL、CSA关于变压器温度特性的要求。 5、电磁兼容性试验 电磁兼容性是指设备或系统在共同的电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁干扰的能力。 电磁干扰波一般有两种传播途径,要按各个途径进行评价。一种是以波长较长的频带向电源线传播,给发射区以干扰的途径,一般在30MHz以下。这种波长较长的频率在附属于电子设备的电源线的长度范围内还不满1个波长,其辐射到空间的量也很少,由此可掌握发生于LED电源线上的电压,进而可充分评估干扰的大小,这种噪声叫做传导噪声。 当频率达到30MHz以上,波长也会随之变短。这时如果只对发生于电源线的噪声源电压进行评价,就与实际干扰不符。因此,采用了通过直接测定传播到空间的干扰波评价噪声大小的方法,该噪声就叫做辐射噪声。 测定辐射噪声的方法有按电场强度对传播空间的干扰波进行直接测定的方法和测定泄露到电源线上的功率的方法。 电磁兼容性试验包括以下试验内容: ①磁场敏感度 (抗扰性)设备、分系统或系统暴露在电磁辐射下不希望有的响应程度。敏感度电平越小,敏感性越高,抗扰性越差。包括固定频率、峰峰值的磁场测试。 ②静电放电敏感度 具有不同静电电位的物体相互靠近或直接接触引起的电荷转移。300PF电容充电到15000V,通过500Ω电阻放电。可超差,但放完后要正常。测试后,数据传递、储存不能丢。 ③LED电源瞬态敏感度 包括尖峰信号敏感度(0.5μs、10μs2倍)、电压瞬态敏感度(10%~30%,30S恢复)、频率瞬态敏感度(5%~10%,30S恢复)。 ④辐射敏感度 对造成设备降级的辐射干扰场的度量。(14kHz~1GHz,电场强度为1V/M)。 ⑤传导敏感度 当引起设备不希望有的响应或造成其性能降级时。 对在电源、控制或信号线上的干扰信号或电压的度量(30Hz~50kHz/3V,50kHz~400MHz/1V)。 ⑥非工作状态磁场干扰 包装箱4.6m,磁通密度小于0.525μT;0.9m,0.525μT。 ⑦工作状态磁场干扰 上、下、左、右交流磁通密度小于0.5mT。 ⑧传导干扰沿着导体传播的干扰。10kHz~30MHz,60(48)dBμV。 ⑨辐射干扰:通过空间以电磁波形式传播的电磁干扰。 10kHz~1000MHz,30屏蔽室60(54)μV/m。以上就是LED电源可靠性检测方法,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 可靠性 电源

  • 你知道LED家居照明灯具的色温吗?

    你知道LED家居照明灯具的色温吗?

    什么是LED家居照明灯具的色温?你知道吗?色温是个什么概念?很多人就知道说要白色的、要黄色的光,那么这是颜色的光并不是随便的选择,这些不同的色温能够改变人的不同的情绪,就比如说:北方的人习惯性选择黄光的灯,而南方的人习惯性选择白光占多数;那么这个是为什么呢? 由于黄光是属于暖色调的光,而白光是属于冷色调的光,所以由于气候等方面的因素导致北方的人会习惯性选择暖色光,而南方人则习惯性选择冷色调光; LED家居照明灯具的色温是以绝对温度“K” 来表示,即将一标准黑体加热,温度升高到一定程度时颜色开始由深红 -浅红- 橙黄 - 白 - 蓝,逐渐改变,某光源与黑体的颜色相同时, 我们将黑体当时的绝对温度称为该光源之色温。 因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的 评价值,并非一种精确的颜色对比,故具相同色温值的两个光源,可能在光色外观上仍有些许差异。仅凭色温无法了解光源对物体的显色能力,或在该光源下物体颜色的再现如何。不同光源环境的相关色温度。 光源色温不同,光色也不同,色温在 3000k 以下有温暖的感觉,达到稳重的气氛;色温在 3000k-5000k 为中间色温,有爽快的感觉;色温在 5000k 以上有冷的感觉。 从光谱图上,我们可以很清楚的看到,对应的颜色代表对应的色温;那么在灯具的测试报告中,我们做好一批灯具,比如生产10万pcs灯具,那么这个时候,是能是取样测试,在不同批次的光源生产时,对成品灯具的色温是有一定的影响,也就是说我们只要在某色温的正负100-200K都算是正常范围; 所以,以后我们去灯饰厂买灯时,就可以测试特定的色温,那么一个LED家具照明灯具的好坏,不仅仅是由灯具色温决定的,还有重要的参数:光效、显示、光通量、照度、有无炫光、有无频闪、以及发光角度等这些参数共同决定的; 举个简单的例子:就说发光角度,平板灯(也叫做面板灯,有直射式和侧发光)一般用在主要照明区域,而射灯、轨道灯、天花灯则是辅助照明,适用于装饰类,比如服装店用的多的就是轨道射灯。以上就是LED家居照明灯具的色温解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 家居 照明灯

  • 如何让LED驱动具备高可靠性,你知道吗?

    如何让LED驱动具备高可靠性,你知道吗?

    你知道如何让LED驱动具备高可靠性吗?要普及LED灯具不但需要大幅度降低成本,还需要解决技术性的问题。如何解决能效和可靠性这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED驱动设计的心得。 一、不要使用双极型功率器件 DougBailey指出由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性,因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET器件,MOSFET器件的使用寿命要远远长于双极型器件。 二、尽量不要使用电解电容 LED驱动电路中到底要不要使用电解电容?目前有支持者也有反对者,支持者认为如果可以将电路板温度控制好,依次达成延长电解电容寿命的目的。 例如选用105度寿命为8000小时的高温电解电容,根据通行的电解电容寿命估算公式“温度每降低10度,寿命增加一倍”,那么它在95度环境下工作寿命为16000小时,在85度环境下工作寿命为32000小时,在75度环境下工作寿命为64000小时,假如实际工作温度更低,那么寿命会更长!由此看来,只要选用高品质的电解电容对驱动电源的寿命是没有什么影响的! 还有的支持者认为由无电解电容带来的高纹波电流而导致的低频闪烁会对某些人眼造成生理上的不适,幅度大的低频纹波也会导致一些数码像机设备出现差频闪烁的亮暗栅格。所以,高品质光源灯具还是需要电解电容的。不过反对者则认为电解电容会自然老化,另外,LED灯具的温度极难控制,所以电解电容的寿命必然会减少,从而影响LED灯具的寿命。 对此,DougBailey认为,在LED驱动电路输入部分可以考虑不用电解电容,实际上使用PI的LinkSwitch-PH就可以省去电解电容,PI的单级PFC/恒流设计可以让设计师省去大容量电容,在输出电路中,可以用高耐压陶瓷电容来代替电解电容从而提升可靠性。 “有的人在设计两级电路的时候,在输出采用了一个400V的电解电容,这会严重影响电路的可靠性,建议采用单级电路用陶瓷电容就可以了。”他强调。“对于不太关注调光功能、高温环境及需要高可靠性的工业应用来说,我强烈建议不采用电解电容进行设计。” 三、MOSFET的耐压不低于700V 耐压600V的MOSFET比较便宜,很多认为LED灯具的输入电压一般是220V,所以耐压600V足够了,但是很多时候电路电压会到340V,在有浪涌的时候,600V的MOSFET很容易被击穿,从而影响了LED灯具的寿命,实际上选用600VMOSFET可能节省了一些成本但是付出的却是整个电路板的代价,所以,“不要选用600V耐压的MOSFET,最好选用耐压超过700V的MOSFET。”他强调。 四、尽量使用单级架构电路 Doug表示有些LED电路采用了两级架构,即“PFC(功率因数校正)+隔离DC/DC变换器”的架构,这样的设计会降低电路的效率。例如,如果PFC的效率是95%,而DC/DC部分的效率是88%,则整个电路的效率会降低到83.6%! “PI的LinkSwitch-PH器件同时将PFC/CC控制器、一个725VMOSFET和MOSFET驱动器集成到单个封装中,将驱动电路的效率提升到87%!”Doug指出,“这样的器件可大大简化电路板布局设计,最多能省去传统隔离反激式设计中所用的25个元件!省去的元件包括高压大容量电解电容和光耦器。”Doug表示LED两级架构适用于必须使用第二个恒流驱动电路才能使PFC驱动LED恒流的旧式驱动器。这些设计已经过时,不再具有成本效益,因此在大多数情况下都最好采用单级设计。 五、尽量使用MOSFET器件 如果设计的LED灯具功率不高,那么建议可以使用集成了MOSFET的LED驱动器产品,因为这样做的好处是集成MOSFET的导通电阻少,产生的热量要比分立的少,另外,就是集成的MOSFET是控制器和FET在一起,一般都有过热关断功能,在MOSFET过热时会自动关断电路达到保护LED灯具的目的,这对LED灯具非常重要,因为LED灯具一般很小巧且难以进行空气散热。以上就是如何让LED驱动具备高可靠性的方法,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 驱动 高可靠性

  • LED照明光源的高演色性与高可靠性,你知道吗?

    LED照明光源的高演色性与高可靠性,你知道吗?

    什么是LED照明光源的高演色性与高可靠性?它有什么作用?随着蓝光和白光发光二极管(LED)在1990年大举迈向实用化阶段后,无论是利用LED所进行的全彩显示,或是在近年来社会大众对节能议题所展现的高度重视下,LED所普及到的智能手机、个人电脑(PC)、电视背光、照明、白色家电产品或交通号志等多样化的产品应用领域愈来愈广。 为满足市场需求,业界针对各种产品系列,包括能够实现高演色性与高可靠性的照明用LED、以PICOLED为代表产品的小型薄型LED,以及车用客制化色彩LED等倾注了相当的研发资源。 01、照明用白光LED产值急速成长 受到世界节能趋势以及日本东北大地震所引发的节能意识高涨,日本市场对于照明用白光LED的需求量大增,促使LED照明市场产值正不断急遽成长,然而,若要让照明光源完全从传统的白炽灯泡照明方式转换为LED照明,在产品特性上仍有些亟待解决的问题存在。其中,业界研发重点尤以LED灯的高演色性与高可靠性为主,以下将分别就业者针对高Ra值与发光效率的技术做分享。 02、兼顾高Ra值与发光效率 平均演色性评价指数(Ra)就是光源使物体表现或重现真实颜色的一种指数,指数愈高,代表颜色重现性愈佳(太阳光的Ra为100),市场上期盼照明用白光LED能够兼具高发光效率与高演色性(Ra≧80),但发光效率与Ra值两者之间却存在着效益权衡(Trade-off)特性。由于市场上对于发光效率有更高的要求,因此目前市场上多为Ra≒70的高发光效率LED。 一般白光LED灯的封装结构是将蓝光LED晶片安装在基板上,再以含有萤光体的树脂进行封装。在LED元件的发光色(蓝色)与萤光体的发光色(黄色、红色或绿色等)混合后,便会形成白光。 从发光效率的观点上来看,一般大多以蓝光+黄光来形成白光,但这样会造成红光的重现性不佳,因此不适合照明用途。一般所采用的解决方法就是增加红光的成分,藉此改善红光的重现性,但如此会有导致发光效率不理想的问题。 为兼顾高发光效率与高Ra值,业者将萤光体有效率地配置于封装内部,以两全其美的技术做为解决对策,成功地研发出Ra≧80且发光效率极高的产品。该系列产品无论在Ra或R9(红色)指数上的表现均十分良好,与Ra值相同的其他厂牌产品相较之下,该系列产品的R9值更高,红色的重现性也更佳。随着此项技术的突破,LED灯不但能降低色度的不均,还能因应更细致的色度等级。 03、高可靠度 近年来,市场上对于可靠性的相关需求也变得日益高涨。尤其是由于LED封装反射率较高,一般大多采用镀银的方式,不过银会因为硫化(因与硫磺产生反应而变黑的一种现象)而造成LED光束劣化,该现象对于户外LED灯造成严重问题,因此各家厂商莫不提出各种镀银方案的因应对策,但目前此问题仍无法完全获得改善。 有监于此,业界舍弃镀银方式,改采镀镍/镀金的方式。将LED封装镀银改为镀镍/镀金后,虽然会导致成本增加,并因反射率的降低而造成发光效率不佳,但经由封装结构的改善后,目前这些问题都已成功地被克服。 新封装结构既能维持高发光效率,又能实现高可靠性的LED发光表现,该系列产品即使在硫化试验中也展现出绝佳的表现,可完全避免光束劣化的现象。 04、LED小型/薄型化 随着行动装置体积轻薄短小化,市场上对于小间距产品的需求逐年强烈,零件也面临着更多降低高度及缩小尺寸之要求。此外,由于户外全彩显示装置大多采用LED,为提高表现效果,全彩型LED封装亦朝向更高密度发展。 05、元件技术 为让封装更小、更薄,内部的LED元件也必须同时采用小型薄型规格。因此,业者从晶圆上的发光层成膜到晶片化均采用自行研发的制程技术,终于成功地将磷化铝镓铟(AlGaInP)发光LED的元件尺寸缩小至边角0.13毫米(mm)、厚度t=50微米(μm),一举实现小型化目标。 06、铸模技术 为确保产品的强度,业者提出针对半导体元件进行树脂封止的加工方法。树脂封止加工系采用移转成形(TransferMold)法,但铸模模具的模穴会愈来愈薄(模穴厚度0.10毫米),因此必须确保树脂的流动性。此外,为确保LED的光学特性,无法对其添加用来确保零件强度的填充材料,如此一来,便会造成产品在机械性强度上的降低,但上述问题目前皆已解决。 07、组装技术 在LED晶片的制作上,必须在厚度t=0.10毫米的封止树脂中对LED元件进行焊线,因此业者采用自行研发的焊线机,成功缩小间距并降低回路。 目前,世界最小的超小型LED体积仅1006尺寸,厚度仅0.2毫米,此产品不受设置空间的限制,并采用高亮度LED元件,透过LED发光,能够让光线从行动电话的外壳内部进行穿透照明。 不但如此,超小型LED还可适用于点矩阵显示器。传统的1608尺寸产品最小间距为2毫米,而超小型LED却能以最小间距1.5毫米进行高密度安装,因此能展现出更细致的表现效果。 在其他特色方面,由于该方案的封装尺寸极小,因此可以用在七段显示器、点矩阵显示器模组上,并省略在晶片直接封装(COB)技术上所必须的晶粒黏着(Die-bonding)、焊线、树脂接合(Bonding)等制程。 08、车用LED照明受瞩目 随着LED灯泡及照明用途急速普及化,车用LED照明较以往更受到市场的青睐。在车辆内装用途上,无论是汽车音响、汽车导航系统或是空调面板等主要背光,目前几乎已全面采用LED光源。接下来,像是目前仍采用传统灯泡的室内灯及警示灯,以及采用冷阴极管的仪表板背光等也将渐渐地面临汰换的命运。 在车辆外装上,近年来像是尾灯、转向灯、定位灯等传统灯泡也已逐步被汰换,甚至连头灯也都由传统的卤素灯、高亮度放电(HID)灯转而被LED灯所取代。若从环境辨识性的观点上来看,采用LED灯作为昼行灯(Daytime Running Lamps,DRL)的趋势更是值得关注。 为因应多样化的车用需求,业界在车用LED技术研发上,将以下列两项为研发重点。 09、色度及亮度之客制化需求 在汽车内装方面,像是空调面板等仪表板周边的光源大多由车厂来指定颜色。业者所推出的磷化铝镓铟元件型LED系列产品,挟元件自制优势,无论是色彩、光度皆可依客户要求自行客制化。 其他像是利用氮化铟镓(InGaN)及含有萤光体的树脂所成功创造出的白光及粉色LED系列,也能提供色彩客制化功能。像是主要按键的背光等使用频率较高的按键,即可藉由微妙的颜色差异突显其与相邻按键之相异性,藉此唤起使用者的注意。这种磷化铝镓铟元件采用在磊晶成长(Epitaxial Growth)阶段上抑制波长差异的技术,因此能够满足客户严格的规格要求。 10、研发耐硫化对策/扩充新品 另一方面,市场对于尾灯等车辆外装用途的LED灯最大要求莫过于耐热性及对严苛气候的耐受性,但由于传统的LED封装的导线架为镀银材料,容易产生硫化及光束劣化问题,目前这个问题也开始受到重视。 鉴于此,业界改镀镍/镀钯/镀金做为导线架材料,成功解决因硫化所造成的光束劣化问题。另外,对于镀镍/镀钯/镀金所引起的光度降低缺点,业者亦研发出新的一系列产品,藉由提高元件本身输出效率的方式来解决,展现出毫不逊于镀银产品的光束强度。未来,业界将采镀镍/镀钯/镀金做为封装硫化改善对策,并积极扩充新的产品系列,以满足客户的多样化需求。以上就是LED照明光源的高演色性与高可靠性解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 照明光源 高演色性

  • 你知道LED静电失效原理吗?

    你知道LED静电失效原理吗?

    你知道LED静电失效原理和检测方法吗?随着LED业内竞争的不断加剧,LED品质受到了前所未有的重视。 LED在制造、运输、装配、使用过程中,生产设备、材料和操作者都有可能给LED带来静电(ESD)损伤,导致LED过早出现漏电流增大、光衰加速;因此,静电对LED品质有非常重要的影响。 LED的抗静电指标不仅仅是简单地体现它的抗静电强度,LED的抗静电能力与其漏电值、整体可靠性有很大关系。 一、LED静电失效原理: 由于环境中存在不同程度的静电,而静电感应或直接转移等形式,使LED芯片PN结两端积聚一定数量的极性相反的静电电荷,形成不同程度的静电电压。 当静电电压超过LED的最大承受值,静电电荷将以极短的时间在LED芯片的两个电极间放电,从而产生热量;在LED芯片内部的导电层、PN结发光层形成1400℃以上的高温,高温导致局部熔融成小孔,从而导致LED漏电、变暗、死灯、短路等现象。微信公众号:深圳LED网 二、检测方法: LED抗静电测试时,将静电直接施加在LED的两个引脚上,仪器的放电波形有严格的标准规定。其中有人体模式和机械模式: 人体模式:当静电施加到被测物体时,串联一个330欧姆的电阻,以此模拟人与器件的接触时电荷转移,人与物体接触通常在330欧姆左右,因此也称人体模式。 机械模式:将静电直接作用于被测器件上,模拟工具机械直接将静电电荷转移到器件上,因此也称机械模式。 这两种测试仪器内部静电电荷储能量、放电波形也有些区别。采用人体模式测试的结果一般为机械模式的8-10倍。LED行业大多使用人体模式指标。 三、测试样品种类: LED芯片、插件式LED、贴片式LED、LED模组、数码管以及LED灯具。以上就是LED静电失效原理和检测方法解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 静电 失效原理

  • 你知道如何让小间距LED显示屏永不黑屏吗?

    你知道如何让小间距LED显示屏永不黑屏吗?

    LED显示屏大家都知道,那么你知道如何让小间距LED显示屏永不黑屏吗?LED显示屏并非寻常电器在厂一次成型,而是根据客户使用要求、安装环境等进行现场制作的一款产品,故障率上比其他电器要高很多,因此对现场制作人员的严谨度及厂家售后要求很高。 近年来,小间距led显示屏的应用日渐普及,凭借显示效果的独特优势,其应用场所由下至普通会议室、监控室、展览展示应用,上至国家级的会议中心、监控中心、中央电视台、以及大型赛事。如G20会议,朱日和阅兵,天津全运会,小间距led显示屏的身影无处不在。 但作为新技术和高精密设备,用户需求除去显示效果的优异外,还伴随有稳定性方面的考量,因为,一旦主会场出现黑屏,将会造成重大国际影响,甚至政治影响,如天津全运会的5环变4环。 小间距显示屏的应用领域分析 作为新一代的室内专业领域显示面板,小间距LED对传统的DLP形成了最直接的冲击,换个角度也就是说小间距LED在产品应用上其实是对DLP形成了技术性代替。但这种代替并非是简单的一比一。小间距LED显示屏和DLP之间还是有很大的应用差异性,所以在针对不同项目中,对于屏幕的技术性选择工作尤其重要。 因此,小间距LED作为会场主屏时,其稳定性考核是重中之中,首要的一条便是不能黑屏。 永不黑屏之黑屏原因分析 正因有此需求,我们深入分析黑屏原因,才能从根本上排除黑屏隐患,真正做到永不黑屏。显示屏为电子器件,内部控制卡芯片为FPGA,不存在操作系统,所以可以将造成黑屏的原因归类为2大部分,一个是器件故障,一个是线缆故障。 1:设备故障 设备故障主要发生于接收卡和开关电源2个器件。 A:接收卡 接收卡上器件繁多,一张普通的接收卡集合了2个千兆网通讯接口,120P灯板驱动接口,还有SDRAM,FLASH等,焊点超过1万点,因LED为感性负载,导致其工作环境比较复杂。有的厂商为了追求超薄而牺牲内部散热空间,使用mini小卡等,其电子器件触点多,电磁环境复杂,内部高热环境,导致工作稳定性降低,一次偶发的电容故障就可能会引起屏幕显示不正常。 B:开关电源故障 LED显示屏为感性负载,且输出负载随画面变动,对内部器件冲击较大,加上开关电源内部电容多,而有的厂商为了降低使用成本,使用带有自动风扇散热的开关电源。由于无论是电容,还是风扇均存在一个较短的使用寿命,所以其成为开关电源故障最为高发的一个诱因,并且在整个器件设备中电源故障造成的黑屏故障高居首位。 2:线缆故障 线缆故障主要分为外部连接线缆,例如给屏体提供电源和信号的电缆,和内部线缆故障,例如内部DC电源线,内部灰排线等。 A:外部线缆 外部线缆中,信号线缆故障率最高,影响最大。显示屏常规使用的信号线缆为cat5e线缆,其由于物料施工等因素难以保证信号通讯的稳定性,特别是2端水晶头对接,抗震动性比较差。 B:内部线缆 内部线缆主要是灰排线,如下图。灰排线多为冷压制作,多次插拔后触点极易接触不良,严重的甚至出现灰排线断裂,所以内部线缆故障是所有线缆连接故障中发生率最高的。 永不黑屏之应对策略 上面分析了黑屏产生的几个原因,我们将对症下药,从设计端就将上述问题屏蔽掉,履行对客户及用户的承诺——永不黑屏。 永不黑屏利器之一:无接收卡 相比传统接收卡设计方案,我司设计采用无接收卡方案,将产品高度集成, 采用集成度更高的专用芯片设计于转接板上。该芯片内部集成了常规接收卡中的千兆网通讯,FPGA,SRAM,FLASH,MCU等,由原先7颗IC现在变为1颗IC,高度集成,减少80%的焊点连接,从前端就将电子器件的故障率降低,进而提高系统稳定性。 永不黑屏利器之二:无排线,接插件硬连接 相比于刚才的排线连接,此内部无任何连接线缆,所有传输均通过PCB和接插件进行,从设计端避免了线缆的多次插拔疲劳和常规冷压造成的触点不良等隐患。 永不黑屏利器之三:双电源 前述讲过,在器件故障中,开关电源故障是第一位,所以对于高端应用场所一般采用双电源备份。同时我司设计的开关电源具有自动均流功能,即2个电源同时半额输出,这样可以降低电源的工作负担,延长电源的使用寿命,也避免了电源冷切换时造成的电网冲击,带来的显示抖动或三次谐波引起设备重启,同时在软件端可实时监控电源状态,检修期间还可以快速更换,以排除故障。 永不黑屏利器之四:环路设计 按照现场对信号稳定性需求的级别和成本预算,我司产品可以完成4个级别的备份。其中最为重要的2个级别的备份,一个是双接口,双回路,一个是双接口四回路。双接口双回路一般用于电视台,而双接口四回路用于现场直播,国家级现场会议等。 永不黑屏环路设计之双接口双回路 如上图,双信号组成2个独立的信号环路,这样可以保证在一套环路出现故障时,另外一套环路可以立即切换过来,切换时间<0.1ms。对于部分电视台需求电源接口热备场所,可以增加电源接插件,实现双路电源,双路信号上屏,在拼接器端通过备份板卡输出2路独立的复制信号到2张发送盒。 永不黑屏环路设计之双接口四回路 备份级别为最高级,即信号的4个输入口,只要有一个正常即可正常工作,广州亚运会会场主屏即是采用此种备份模式。当然,此备份方式会带来前端设备成本增加,通常比常规配置增加4倍以上。以上就是小间距LED显示屏永不黑屏的解决方法,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 显示屏 小间距

  • 你知道LED产品光电性能如何测试吗?

    你知道LED产品光电性能如何测试吗?

    什么是LED产品光电性能的测试标准?光电性能对于LED产品尤为重要,那么大家是否了解LED产品有哪些光电性能呢?下面我们一起来学习一下LED产品光电性能有哪些测试标准。 1.电特性 LED的电特性参数包括正向电流、正向电压、反向电流以及反向电压,该项测试一般是利用电压电流表进行测试,在恒流恒压源供电情况下。通过LED电特性的测试可获得最大允许正向电压、正向电流及反向电压、电流这些参数,此外,还可以获得LED的最佳工作电功率值。 2.光特性 主要包括光通量和光效、光强和光强分布特性以及光谱参数。 光通量和光效:通常有两种方法,为积分球法和变角光度计法。虽然后者的测试结果最为精确,但因耗时较长,一般采用前者。在用积分球法进行测试时,可以将被测LED放置在球心,也可以放置在球壁。测得光通量之后,配合电参数测试仪就可以测得LED的发光效率,也就是光效。 光强和光强分布特性:LED由于光强分布是不一致的,所以它的测试结果随测试距离和探测器孔径的大小变化而变化,可以让各个LED在同一条件下进行光强测试与评价,这样结果比较准确。 光谱参数:主要包括峰值发射波长、光谱辐射带宽和光谱功率分布等。LED的光谱特性都可由光谱功率分布表示,通过光谱功率分布,还可以得到色度参数。一般光谱功率分布的测试需要通过分光进行,将混合光中的单色光逐一区分出来进行测定,可采用棱镜和光栅实现分光。 3.开关特性 是指LED通电和断电瞬间的光、电、色变化特性,通过这项测试可以得到LED在通断电瞬间工作状态、物质属性等变化规律,从而了解通断电对LED的损耗。 4.颜色特性 主要有色品坐标、主波长、色纯度、色温和显色性等,测试方法有分光光度法和积分法。 分光光度法:通过单色仪分光测得LED光谱功率分布,然后利用色度加权函数积分获得对应的色度参数。 积分法:利用特定滤色片配合光电探测器直接测得色度参数。 5.热学特性 也指热阻和结温,热阻是指沿热流通道上的温度差与通道上耗散的功率之比,结温是指LED的PN结温度。LED结温的测试方法有两种,一种是采用红外测温显微镜或微型热偶测得LED芯片的表面温度,另一种是利用确定电流下的正向偏压与结温之间反比变化的关系来判定LED的结温。以上就是LED产品光电性能的测试标准的解析,希望能给大家帮助。

    时间:2020-07-30 关键词: 产品 LED 光电性能

  • 你能区分LED显示屏VS DLP拼接屏吗?

    你能区分LED显示屏VS DLP拼接屏吗?

    什么是LED显示屏VS DLP拼接屏?它有什么作用?电视节目越来越丰富多彩,交互性越来越强,给观众的视觉冲击力也越来越大,其中节目背景起到了重要的作用。近几年来,LED显示屏和DLP拼接屏逐渐成为节目背景的主流,本文拟就这两种显示屏的技术特点、使用效果、优缺点及注意事项等做一些分析和探讨。 一、LED显示屏 LED是LightEmittingDiode的缩写,中文意思为发光二极管,是一种固态的半导体器件,它可以直接把电能转化为光能。LED显示屏是先进的数字化信息产品,它成功融合了计算机技术、网络通信技术、图像处理技术、嵌入式控制技术等,具有灵活多变的显示面积及分辨率(模块化可任意拼装)、高亮度、低功耗、长寿命、低热量、环保耐用等优点,综合运用了声、光、电、图、文,是全方位、完美地展示信息的终端产品。 LED显示屏在电视演播室和电视转播的大型活动中越来越多地被使用,作为舞台背景,它提供了各种生动、炫丽的背景画面和更多的互动功能,使背景画面亦动亦静,使表演和背景融为一体,让人有身临其境的感觉。它带给舞美更大的遐想空间,设计出现代而有视觉冲击力的舞台,完美地将现场和节目的气氛融合在一起,实现了其他舞台美术设备难以实现的功能和效果。 现场观众对LED显示屏的观看效果和感受是十分直观的,只要屏幕尺寸和像素间距与观看距离适当,这种直视式显示屏就可以获得极佳的效果。但是,电视机前观众的数量要远远大于现场观众的数量,所以,电视机前观众的观看效果则是电视技术工作者研究和讨论的重点。很多台都使用了LED显示屏,但出来的电视画面效果却差异很大,有的自始至终画面色彩鲜艳、清晰稳定;有的是远景时画面小看不清,近景时要么是一些活动的亮点,要么是飘忽的条纹干扰,在一些人物特写镜头中,常常会出现网纹干扰,扰乱了观众的视线。 在LED显示屏的选型和使用过程中要注意以下几个方面: 1.点间距要尽可能小 点间距是LED显示屏相邻像素中心点之间的距离。点间距越小,单位面积的像素就越多,分辨率就越高,拍摄距离就可以越近,当然其价格也就越贵。目前国内电视台演播室里使用的LED显示屏的点间距多为6—8毫米,为了达到出色的效果,要认真研究信号源的分辨率和点间距之间的关系,争取做到分辨率一致,达到点对点显示,从而实现最佳的效果。 2.填充系数要高 LED显示屏的填充系数(FillFactor)又称为亮区比例,即每个像素的发光面积与该像素所占物理表面积之比。LED显示屏是由离散的像素排列而成,像素之间存在明显的不发光黑区。当近距离观看时,画面不连贯不完整,而且亮度不均产生颗粒感,如果发光源局限在很小的像素表面积内,致使单个像素亮度是整屏亮度的数倍乃至十多倍,则会造成较为严重的刺目感。平板显示器行业公认的TCO’99标准规定,填充系数不应低于50%,目前市场上很多LED显示屏的填充系数未达到这一指标。电视的低通滤波器的截止特性也直接影响了填充系数不同的LED显示屏的合适拍摄距离。 相同点间距的LED显示屏,填充系数小的比填充系数大的衰减的要多,所以拍摄距离需要加大。假如系统低通滤波通带为4MHz,高频的衰减特性为12db/倍频程,那么,填充系数25%的拍摄距离就比填充系数50%的多衰减1.15db,拍摄距离需要增大约10%。填充系数的提高,使得显示屏的视角更加宽泛,混色效果更加理想,克服了像素的刺眼问题,也为适当提高整屏的亮度以获得更好的效果创造了条件。江苏教育台选用了填充系数为60%的LED显示屏,它具有适中柔和的亮度、均匀鲜艳的色彩、清晰细腻的表现力,保证了显示画面的高品质。 3.色温能够调节 色温(ColorTemperature)是通过发射体发射谱形状与最佳拟合的黑体发射谱形状比较确定的温度。演播室使用LED显示屏作为背景时,其色温应与演播室内灯光色温一致,才能在拍摄中得到准确的色彩再现。演播室的灯光根据节目需求,有时使用3200K低色温灯具,有时使用5600K高色温灯具,LED显示屏则需调节至相应的色温,从而获得满意的拍摄效果。 4.拍摄距离要合适 正如前面谈论点间距和填充系数所提到的,不同点间距、不同填充系数的LED显示屏,合适的拍摄距离是不一样的。被拍人物与屏之间的距离在4—10米比较合适,这样拍摄人物时就能得到比较出色的背景画面。如果人物离屏太近,在拍摄近景时,背景就会出现颗粒感,也容易产生网纹干扰。 5.保证良好的使用环境 产品在使用寿命期内只有在合适的工作条件下,故障率才低。LED显示屏作为集成的电子产品,它主要是由装有电子元器件的控制板、开关电源、发光器件等组成,而所有这些组件的寿命和稳定性都与工作温度有密切的关系。如果实际工作温度超过了产品规定的使用范围,不仅其寿命会缩短,产品本身也会受到严重的损坏。另外,灰尘的威胁也不容忽视。在灰尘比较大的环境中工作,由于PCB吸附灰尘,而灰尘的沉积会影响电子元器件的散热,将导致元器件温度上升,进而出现热稳定性下降甚至产生漏电,严重时会导致烧毁。灰尘还会吸收水分,从而腐蚀电子线路,造成一些不易排查的短路问题。要注意保持演播室的清洁。演播室改造会产生大量灰尘,需提前对LED显示屏做好防护工作。 使用LED显示屏极大丰富了节目背景的显示形式,LED显示屏作为背景,适合大场景、大演播室的大型综艺节目。 二、DLP拼接屏 DLP是DigitalLightProcessing的缩写,中文意思为数字光处理,这种技术是先把影像信号经过数字处理,然后再把光投影出来。从DLP的技术原理上来说,它具有最少的信号噪声、精确的灰度等级、较高的反射率、无缝图像显示、高可靠性等优势。DLP拼接屏由多个背投显示单元拼接而成,其最主要的特点是拼缝小,可以控制到0.5毫米以内,大家都叫它“无缝”拼接,这也是其他两大技术LCD和PDP所不能及的。由于它的这些优势,近几年来电视台流行使用DLP拼接屏作为演播室的背景,CNN、BBC、SKY、CCTV等知名大电视台在使用后都取得了非常出色的节目效果。 DLP拼接屏也有缺点。由于DLP拼接的光源是来自于灯泡,导致它的功耗大,散热量高,而且使用一段时间以后亮度会降低,用户必须不断更换灯泡来保持最初的显示效果。随着技术的发展,得益于LED光源的加入,目前DLP拼接屏已经解决了频繁更换灯泡、功耗大、散热量高等一系列问题。采用了LED光源之后的DLP拼接屏,不仅在使用寿命和功耗上得到了较大的突破,在色彩方面也有了革命性的改变,让DLP拼接屏继续保持着市场领先的优势。 为了达到满意的电视效果,我们在DLP拼接屏的选型和使用过程中要注意以下几个方面: 1.拼接缝隙要尽可能小 我们所希望的背景显示屏在电视上的效果是无缝的,这就需要拼接的缝隙要足够小,才能从镜头中看不到缝隙。目前,使用钛合金针缝合技术能使拼接缝隙缩小至0.2毫米以内,同时通过连接板设计能够保证屏幕在热胀冷缩时不变形,为整个屏幕提供了优质的图像几何形状与锐利度。 2.均匀性要高 DLP拼接屏由多个显示屏拼接而成,也就造成了每块屏的个体差异,而我们希望它们看起来像是一块具有匹配颜色和亮度的大显示屏,这就需要通过技术手段来提高均匀性。目前这种技术已比较成熟,技术先进的厂家已能做到后台静默方式运行,无须操作员参与,它通过集成专有的亮度与颜色传感器,持续测量屏幕墙的颜色与亮度并在投影模块间沟通,自动匹配全白、全黑及两者间全部灰级亮度和全部显示模块颜色,并保持整个显示屏灰级相同,从而实现了多屏拼接下图像的长期一致性。 3.色温需可调节 和LED显示屏一样,DLP拼接屏的色温需保持与演播室内灯光色温一致,才能保证图像色彩的真实还原。 4.演播室灯光要控制好 DLP拼接屏相对于其他显示屏来说,亮度比较低,这就需要控制好演播室的灯光,避免有灯光直射到屏幕上。我们经过摸索研究,使用了带20°格栅的冷光源灯具,有效地将射到屏幕上光的照度控制在100lux以内,又保证了主持人面光的照度能达到800—1000lux,获得了满意的效果。 5.光源需有高安全性 电视直播的互动性越来越强,对背景的安全性要求也越来越高,DLP拼接屏的单个屏体尺寸都较大,如果光源出现问题,导致黑屏,对这个节目乃至一个台的负面影响都会很大。所以需要使用双灯热备份或带冗余的LED模块来作为光源。 6.保证良好的散热,还要控制好噪声 UHP灯泡和LED光源在工作时都会产生很大的热量,它的散热是保证光源寿命和正常工作的重要环节,先进的液冷技术能使冷却效率更高,噪声更小,还要注意保持良好的环境温度,在关机时也不能立即切断电源,要让冷却系统继续运行一段时间,使光源充分冷却后再切断电源,这对光源起到良好的保护作用,使之工作时能有最佳的表现。 DLP拼接屏是演播室背景的一大变革,但是由于它对灯光的要求较高,不适合在大型综艺节目中使用,适合在中小型演播室中做新闻、访谈、现场连线、天气预报等类型的节目。 随着技术的发展,将有更多的新技术和新方式应用于演播室背景。我们要深入了解它们的特点,针对不同的演播室条件、节目形式和要求来选择技术产品作为背景,让这些新技术最大限度地发挥其优势,更好地为节目服务,为观众服务。以上就是LED显示屏VS DLP拼接屏解析,希望能给大家帮助。

    时间:2020-07-30 关键词: LED 显示屏 dlp拼接屏

  • LED显示屏散热量提高的方法,你知道吗?

    LED显示屏散热量提高的方法,你知道吗?

    你知道如何提高LED显示屏散热量吗?在实际应用中,提高LED显示屏的散热量,不仅有效提高LED显示屏散热量的效率,也可以达到节约电量的作用,更有利于提高LED显示屏使用寿命的功效。 1、风扇散热,灯壳内部用长寿高效风扇加强散热,比较常用的方法这种方法造价低、效果好。 2、利用铝散热鳍片,这是最常见的散热方式,用铝散热鳍片做为外壳的一部分来增加散热面积。 3、空气流体力学,利用灯壳外形,制造出对流空气,这是最低成本的加强散热方法。 4、表面辐射散热处理,灯壳表面做辐射散热处理,较为简单的就是涂抹辐射散热漆,可以将热量用辐射方式带离灯壳表面。 5、导热散热一体化--高导热陶瓷的运用,灯壳散热的目的是降低led高清显示屏芯片的工作温度,由于LED芯片膨胀系数和我们常的金属导热、散热材料膨胀系数差距很大,不能将LED芯片直接焊接,以免高、低温热应力破坏LED显示屏的芯片。 6、导热管散热,利用导热管技术,将热量由LED显示屏芯片导到外壳散热鳍片。 7、导热塑料壳,在塑料外壳注塑时填充商导热材料,从而达到增加塑料外壳导热、散热能力。 可见LED显示屏散热技术的成熟和进步都会有利于它的节约,环保理念。LED电子显示屏厂家在LED显示屏制作上,提高LED显示屏散热量的方法多种多样。散热时依据功率大小及使用场所,会有不同的考量。以上就是LED显示屏散热量解析,希望能给大家帮助。

    时间:2020-07-30 关键词: LED 显示屏 散热量

  • 你知道低功率LED可靠性应该怎么测试吗?

    你知道低功率LED可靠性应该怎么测试吗?

    什么是低功率LED可靠性?你知道吗?一般来说,LED的可靠性是以半衰期(即光输出量减少到最初值一半的时间)来表征,大概在1万到10万小时之间LED的可靠性测试包括静电敏感度特性、寿命、环境特性等指标的测试。 静电敏感度特性是指LED能承受的静电放电电压。某些LED由于电阻率较高,且正负电极距离很短,若两端的静电电荷累积到一定值时,这一静电电压会击穿PN结,严重时可将PN结击穿导致LED失效,因此必须对LED的静电敏感度特性进行测试,获得LED的静电放电故障临界电压。目前一般采用人体模式、机器模式、器件充电模式来模拟现实生活中的静电放电现象。 为了观察LED在长期连续使用情况下旋光性能的变化规律,需要对LED进行抽样试验,通过长期观察和统计获得LED寿命参数。对于LED环境特性的试验往往采用模拟LED在应用中遇到的各类自然侵袭,一般有:高低温冲击试验、湿度循环试验、潮湿试验、盐雾试验、沙尘试验、辐照试验、振动和冲击试验、跌落试验、离心加速度试验等。一般测试低功率LED的可靠性具体项目有以下几点: 1.焊锡耐热性:260℃±5℃,5Sec,外观和电气特性无异常。 2.温度循环试验:85℃(30min)——转换5min——40℃(30min) 为1cycle,,需做50cycle,外观和电气特性无异常。 3.热冲击试验:100℃(5min)——转换10sec——10℃(5min) 1cycle, 需做50cycle,外观和电气特性无异常。 4.高温储存试验:在温度100℃环境下放置1000Hrs,外观和电气特性无异常。 5.低温储存试验:在温度-40℃环境下放置1000Hrs,外观和电气特性无异常。 6.高温高湿放置试验:在温度85℃/相对湿度85%RH环境下放置1000Hrs,外观和电气特性无异常。 7.引脚拉力试验:依据引脚截面积的大小施加重力/30Sec,引脚须无拉脱及松动,电气特性无异常。 8.引脚弯折试验:依据引脚截面积的大小施加重力,弯折±90度(距本体3mm处)2回,引脚须无折断及松动,电气特性无异常。 9.寿命试验:施加IF电流,连续工作1000Hrs,外观和电气特性无异常。以上就是低功率LED可靠性解析,希望能给大家帮助。

    时间:2020-07-30 关键词: LED 可靠性 低功率

  • LED灯珠的防潮保护,你知道怎么做吗?

    LED灯珠的防潮保护,你知道怎么做吗?

    LED大家都知道,那么你知道LED灯珠的防潮保护吗?随着季节变化空气中湿度日益增大,针对LED灯珠产品该如何做到妥善防潮,避免因潮湿环境因素而影响产品品质?为此,福建天电光电给出了以下建议进行防潮保护,降低产品不良耗损与潜在品质隐患。 一、LED灯珠产品采用具有防潮防静电铝箔袋包装,搬运过程中应避免挤压、刺穿包装袋造成防潮袋漏气的情形发生; 二、在这潮湿季节,在防潮袋未打开时,建议存储条件为:温度<30℃,湿度<60%RH(最好保存在防潮柜内)并在6个月内使用完毕; 三、如在6个月未使用完毕的LED灯珠建议再次使用前需增加烤箱烘烤除建议除湿(建议除湿条件60℃/24H); 四、在包装拆封后,对未用完的LED灯珠应再次抽真空密封或放置防潮柜,禁止使用透明胶带、钉书等进行简单的封口; 五、使用LED灯珠前,需确队湿度卡防潮珠是否有变色。如防潮珠大于等于30%以上变色,使用前增加烤箱烘烤除湿(建议除温条件:60℃/24H) 六、当LED灯珠拆封后进行SMT时,即已暴露在车间环境中,建议车间环境控制:温度<30℃,湿度内小于60%RH内; 七、在潮湿季节,针对Reflow之后(组装灯具之前)的灯板,建议放置车间环境时间:3-5天。以上就是LED灯珠的防潮保护的解析,希望能给大家帮助。

    时间:2020-07-30 关键词: LED 灯珠 防潮保护

  • 你知道小间距LED屏视频处理器的一些重要技术吗?

    你知道小间距LED屏视频处理器的一些重要技术吗?

    什么是小间距LED屏视频处理器?它有什么作用?随着LED小间距产品的显示面积越来越大,几十平方米的项目屡见不鲜,LED显示屏的物理分辨率往往会超过1920×1200,即每一块超大规模的LED显示屏,都是由若干个LED控制器所驱动的若干个独立的显示区域组成的,对于拼接器的应用而言,只需要对应LED控制器的数量提供若干个DVI输出接口,并对整个LED屏幕进行拼接显示即可。拼接器在小间距LED显示屏的应用中,有几个关键技术值得关注。 信号的输出同步性 视频处理器的多路DVI信号输出,必然存在信号的同步性问题。不同步的信号输出到LED显示屏上,在拼接处就会出现画面撕裂现象,在播放高速运动的图像时尤为明显。如何保证信号的输出同步性,成为衡量一个拼接系统成败的关键。 图形处理算法 我们知道,点对点的图像显示效果是最好的,经过缩小处理后的图像,如果仅采用普通的图形处理技术或通用的FPGA图形处理算法,图像的边缘会出现锯齿,甚至会出现像素缺失,图像的亮度也会下降。而高端的图像处理芯片或利用复杂图形处理算法的FPGA系统会最大限度的保证缩小后图像的显示效果。因此,好的图形处理算法是一款应用于小间距LED显示屏的拼接器的关键技术。 非标准分辨率的输出 小间距LED显示屏是由一块一块相同规格的显示单元矩阵拼接而成,每个显示单元尺寸和物理分辨率是固定的,但是拼接起来的整个大屏幕,往往不是一个标准的物理分辨率。比如,显示单元的分辨率为128×96,只能拼成1920×1152,却拼不出1920×1080。 在超大规模的拼接系统里,每台LED控制器所驱动的LED显示区域可能不是标准的分辨率,这个时候,拼接器具有非标准分辨率的输出就显得关键,它可以帮助我们快速找到合适的拼接方式,从而合理的分配资源,有效节约LED控制器和传输设备的使用数量。以上就是小间距LED屏视频处理器解析,希望能给大家帮助。

    时间:2020-07-30 关键词: led屏 视频处理器 小间距

发布文章