开关电源作为典型的反馈控制系统,其核心目标是实现稳定、精准的直流输出。但实际设计中,环路并非仅针对直流成分进行调控,反而必须涵盖一定范围的交流频率成分。这一设计选择并非妥协,而是由开关电源的工作机制、稳定性需求及动态性能指标共同决定的,是平衡系统各项性能的关键设计逻辑。
在电源设计领域,DCDC转换器的效率是衡量性能的核心指标,直接关系到系统续航、热管理与可靠性。不少工程师在选型和调试时会产生疑问:厂商给出的DCDC效率参数,是否包含外围无源器件的损耗?答案是肯定的——**标准DCDC效率计算已涵盖外围无源器件的能量耗散**,但需明确其测量边界与实际应用中的差异,避免设计偏差。
在使用笔记本电脑、显示器、路由器等电子设备时,电源适配器发热是极为常见的现象。不少用户对此忧心忡忡,既担心设备损坏,又害怕引发安全隐患。事实上,适配器发热分为正常散热与异常过热两种情况,前者无需担心,后者需及时排查处理。本文将从发热原因、正常与异常的界定、解决方法及保养技巧等方面,全面解答电源适配器供电发热的问题。
在电子电源管理领域,双开关型升-降压转换器(Buck-Boost Converter)是一种关键的拓扑结构,广泛应用于需要宽输入电压范围或动态电压调整的场景。
在现代电子设备中,电源供应器的选择与设计对设备的性能与稳定性有着至关重要的影响。
节能是全球化的热潮,如计算机里的许多芯片过去用5V供电,现在用3.3V、1.8V,并提出了绿色系统的概念。
在电力电子领域,DC-DC变换器的控制策略对于提高能量转换效率、确保系统稳定性至关重要。
因为电源的反馈端加入了前馈电容,所以与反馈电阻形成新的零点和极点,虽然Cff在其零点频率之后引入了增益提升,此处涉及较深的控制理论,不再展开叙述。
基于GaAs 的LNA 的一个代表是HMC519LC4TR。这是一种来自Analog Devices 的18 到31 GHz pHEMT(假晶高电子迁移率晶体管)器件。
光源跟踪系统是一种能够自动调节光源方向的系统,主要目的是在不同的环境下保持照明效果稳定,提高照明效率和舒适度。它通常由传感器、控制器和执行器三部分组成。
既有直流功率变换也有交流功率变换。功率变换器利用电表只对带有“钨丝”的发热的电阻性的用电器限定了瓦数的漏洞,而制作出来的产品。
在电子领域,DC-DC转换器扮演着至关重要的角色。它能够将一个直流电源的电压转换为另一个直流电源所需的电压,同时保持电流的连续性。
在电子电路与电力系统中,谐振现象扮演着至关重要的角色。串联谐振作为谐振电路的一种基本形式,在信号处理、电力传输和通信技术等领域有着广泛的应用。
在现代电子设备的运行中,电源输入端口往往会受到来自外部环境的各种干扰,如电磁噪声、杂散信号等,这些干扰信号可能会对设备的正常运行产生不良影响。
本文将深入分析几种常见的恒流源电路,包括三极管恒流源、运放恒流源、三极管与运放组合的恒流源,以及镜像恒流源和比例恒流源,探讨它们的原理、优缺点及应用场景。