碳化硅 (SiC) 因其更高的开关频率和更高的结温而被称为汽车行业传统 Si IGBT 器件的继承者。此外,在过去五年中,汽车行业已成为基于 SiC 的逆变器的公共试验场。事实证明,通过 SiC 转换器实现 DC 到 AC 的基本转换比硅 (Si) 转换器更小、更轻且更高效,因此宽带隙器件在汽车行业的潜力将显着增长。
工业电源应用基于强大的电动机,可以在风扇、泵、伺服驱动器、压缩机、缝纫机和冰箱中找到。三相电动机是最常见的电动机类型,它由适当的基于逆变器的驱动器驱动。它可以吸收一个行业高达 60% 的全部电力需求,因此对于驱动器提供高效率水平至关重要。
本文追溯了电力电子的历史,可追溯到硅MOSFET仍用于驱动强大的电子负载时。让我们通过描述、应用和模拟重新发现硅的世界,了解电子世界是如何在短短几年内发生巨大变化的,因为新的 SiC 和 GaN MOSFET 的发现和开发。
与低功率同类产品不同,MOSFET、IGBT、功率二极管和晶闸管等功率器件会产生大量热量。因此,有效的热管理对于确保电力电子设备的可靠性和优化的寿命性能至关重要,包括由更高工作温度、宽带隙 (WBG) 半导体材料制成的设备。
今天的汽车配备了种类繁多的电子配件和电子安全辅助装置,使车辆更具吸引力、更安全和更易于使用。此外,传统的液压系统(如动力转向和自动变速箱)正在被电动等效系统取代,以帮助减轻整体重量并提高燃油经济性。
电力设计是由市场需求驱动的,以提高效率和生产力,同时符合法规要求。最重要的最终用户需求几乎总是更小、更轻、更高效的系统,这得益于功率半导体设计的重大创新。在硅 MOSFET 和 IGBT 长期以来一直在功率半导体中占据主导地位的地方,宽带隙 (WBG) 技术,尤其是碳化硅 (SiC) 技术的最新进展正在为电力电子系统的设计人员带来额外的好处,提高效率和更高的电压能力,从而减少形式因素。
2022年3月24日,世强硬创平台与成都方舟微电子有限公司(下称“方舟微“)签署合作协议,方舟微授权世强硬创平台代理旗下耗尽型MOSFET、增强型MOSFET和保护器件等全线产品。
在几家造车新势力高调推出搭载碳化硅芯片模组的主驱逆变器大功率平台电动汽车后,中国功率半导体上车进程开始进入白热化,电车厂纷纷加快碳化硅模块的研发及布局。
宜普电源转换公司(EPC)新推40 V、1.1 mΩ的氮化镓场效应晶体管(EPC2066),为设计工程师提供比硅MOSFET更小、更高效的器件,用于高性能、占板面积受限的应用。
【2022 年 05 月 26 日美国德州普拉诺讯】Diodes 公司 (Diodes) (Nasdaq:DIOD) 宣布推出创新高电流、高热效率且符合电动车 (EV) 产品应用需求的功率封装 PowerDI®8080-5。PowerDI®8080-5 封装的首款产品为 DMTH4M70SPGWQ,在 10V 闸极驱动下,此款符合汽车规格的 40V MOSFET 典型 RDS(ON) 仅为 0.54mΩ,闸极电荷为 117nC。如此领先业界的效能使汽车高功率 BLDC 马达驱动器、DC-DC 转换器及充电系统的设计人员能大幅提升系统效率,同时确保将功耗维持在绝对最低水平。
在线性模式工作时,MOSFET必须在恶劣工作条件下工作,承受很高的漏极电流(ID)和漏源电压 (VDS),然后还需处理很高的功率。这些器件必须满足一些技术要求才能提高耐用性,还必须符合热管理限制,才能避免热失控。
2022 年 5 月 18日,中国 – 意法半导体的 STPOWER MDmesh M9和DM9硅基N沟道超结多漏极功率MOSFET晶体管非常适用于设计数据中心服务器、5G基础设施、平板电视机的开关式电源 (SMPS)。
在这篇文章中,我们将研究 MOSFET 用于电池保护。 每年,越来越多的电子设备由包含锂离子 (Li ion) 电池的电池供电。高功率密度、低自放电率和易于充电使其成为几乎所有便携式电子产品的首选电池类型——如今,从口袋里的手机到每天数以百万计开车上班的电动汽车,应有尽有由锂离子电池供电。尽管它们具有许多优点,但这些电池也带来了一定的风险和设计挑战,如果不成功缓解这些风险和设计挑战,可能会导致灾难性的后果。我认为没有人会很快忘记 2016 年爆炸性的 Galaxy S7 设备平板电脑和随后的召回。
MOSFET 被用作负载开关的次数超过了在任何其他应用中的使用量,一次数量为数亿个。我可能应该从我在这里定义“负载开关”的确切方式开始。为了这篇文章的缘故,考虑负载开关任何小信号 FET,其在系统中的唯一功能是将一些低电流 (
在当前市场上,高性能功率 MOSFET 最常见的用途或许也是选择最合适的 FET 的最大挑战。性能、价格和尺寸之间的权衡从来没有比开关模式电源 (SMPS) 中使用的 MOSFET 更混乱。 遍历一个详尽的 SMPS 拓扑列表,包括隔离的和非隔离的,并列出每个拓扑最重要的考虑因素,这可能需要一个新奇的 - 一个比我这样的简单营销工程师拥有更多技术知识的应用程序专家。但我确实希望在本博客的后续段落中,我可以提供至少一些技巧和陷阱来避免。
在复杂的电源设计中,金属氧化物半导体场效应晶体管 (MOSFET) 的选择往往是事后才考虑的。毕竟,它只是一个三针设备。它有多复杂,对吧?但是任何喜欢生蚝的人都会(试图)告诉你,外表可能是骗人的。尝试选择正确的 MOSFET 或“FET”可能比我们想象的要复杂。
在LFPAK封装中采用新型SOA(安全工作区) Trench技术,可提供出色的瞬态线性模式性能,为设计人员带来体积更小、更可靠的选择。
新器件缩小封装尺寸60%,增强性能并减少损耗
碳化硅 (SiC) MOSFET 在功率半导体行业取得了重大进展,这要归功于与硅基开关相比的一系列优势。这些包括更快的开关、更高的效率、更高的工作电压和更高的温度,从而产生更小、更轻的设计。 这些属性导致了一系列汽车和工业应用。但是像 SiC 这样的宽带隙器件也带来了设计挑战,包括电磁干扰 (EMI)、过热和过压条件,这些可以通过选择正确的栅极驱动器来解决。
《星际迷航》如何预测未来的技术进步继续让我感到惊讶。《星际迷航:原始系列》中的手持通讯器在 1960 年代作为道具出现在电视节目中时似乎是一个奇迹。然而,它又大又笨重,而且在几集中,通讯器丢失或停止工作,这使得传送回船上是不可能的。