当前位置:首页 > 电源 > 功率器件
[导读]功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率,及直流交流转换等。只要在拥有电流电压及相位转换的电路系统中,都会用到功率零组件。

功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率,及直流交流转换等。只要在拥有电流电压及相位转换的电路系统中,都会用到功率零组件。


基本上,功率半导体大致可分为功率离散元件 (Power Discrete) 与功率积体电路 (Power IC) 二大类,其中,功率离散元件产品包括 MOSFET、二极体,及 IGBT,当中又以 MOSFET 与 IGBT 最为重要。


IGBT 比 MOSFET 好吗?我已经完成了相当多的电源设计,包括开关电源和 H 桥电机控制器。早在 1970 年代和 1980 年代,我的设计是使用 NPN 双极功率晶体管完成的。我们很少使用 PNP 设备,因为它们通常成本更高,并且当前额定值不及 NPN 对应设备(其他条件相同)。


MOSFET、IGBT 主要用于将发电设备所产生电压和频率杂乱不一的电流,透过 一系列的转换调製变成拥有特定电能参数的电流,以供应各类终端电子设备,成为电子电力变化装置的核心元件之一。 而全球功率半导体市场中,用于工业控制比重最高,达 34%,其次是汽车及通讯领域各占 23%,消费电子则占 20%。


MOSFET 依内部结构不同,可达到的电流也不同,一般大到上 KA 也是可行,但 MOSFET 耐电压能力没有 IGBT 强。 而 MOSFET 优势在于可以适用高频领域,MOSFET 工作频率可以适用在从几百 KHZ 到几十 MHZ 的射频产品。而 IGBT 到达 100KHZ 几乎是最佳工作极限。 最后,若当电子元件需要进行高速开关动作,MOSFET 则有绝对的优势,主要在于 IGBT 因有整合 BJT,而 BJT 本身存在电荷存储时间问题,也就是在 OFF 时需耗费较长时间,导致无法进行高速开关动作。 所以综合来看,MOSFET 适用在携带型的充电电池领域,或是行动装置中。至于 IGBT 则适用在高电压、大功率的设备,如电动马达、汽车动力电池等。


我们也避开了达林顿晶体管。它们具有高到非常高的增益,但它们的饱和电压也很高,显着增加了器件内的功耗。


由于输入晶体管的集电极连接到输出晶体管的集电极,一旦输出晶体管开始导通,它就会从输入晶体管中夺走驱动电流(或剥夺电压源)。结果是复合器件的饱和电压约为 1 伏。在高集电极电流下,器件中耗散的功率使其运行时非常温暖。


从 1980 年代到现在,选择的晶体管通常是 N 沟道 MOSFET。与双极器件一样,P 沟道 FET 的额定功率不高,而且价格更高。使用 FET,极高的输入阻抗使驱动栅极更加 容易。栅源电容在一定程度上抵消了这一优势,尤其是在高开关频率下。


我从未使用过绝缘栅双极晶体管 (IGBT),部分原因是我从未完全理解它们。我最初认为它们是用 N 沟道 FET 代替输入双极晶体管的达林顿器件。这将产生具有极高输入阻抗和高总增益的器件,但当然仍会存在高饱和电压和相应的高功耗。


我最近看到更多关于 IGBT 器件的新闻稿,所以我决定仔细研究一下这些器件的真正含义。


啊哈!它实际上使用 N 沟道 FET 作为输入器件,但双极器件是 PNP 器件。现在它变得更加高效,并且该设备可以具有非常高的击穿电压能力。只需几伏电压即可打开 FET,然后您就可以用力打开 PNP 晶体管。有那个寄生NPN晶体管;与 PNP 相结合,它使双极部分看起来像一个 SCR。事实上,早期的 IGBT 器件存在闩锁问题:有时,一旦打开它们,就无法将其关闭,除非您切断集电极电流(关闭主电源)。现代设备已经解决了这个问题。


顺便说一句,您会看到 IGBT 的不同符号;这个是半常见的:


请注意,上端称为集电极,但它连接到 PNP 发射极。这只是为了简化每个人对其使用方式的理解,而不是内部发生的事情。


这些设备并不是适用于所有应用的解决方案。只要您将它们与可比较的高压、大电流器件(高达千伏和数百安培范围)进行比较,它们的正向压降就低于普通 MOSFET。在更温和的电流水平下,常规 FET 更好。如果您需要 PWM 速率的高开关速度(达到数百 kHz 或 MHz 范围),请再次使用传统的 FET。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭