当前位置:首页 > 电源 > 功率器件
[导读]尽管硅是电子产品中使用最广泛的半导体,但最近的研究表明它有一些局限性,特别是在大功率应用中。带隙是基于半导体的电路的相关因素,因为高带隙在高温、电压和频率下的操作方面具有优势。硅的带隙为 1.12 eV,而碳化硅的带隙值高 3 倍,为 3.2 eV,因此性能和效率更高,开关频率更高,总占位面积更小。

尽管硅是电子产品中使用最广泛的半导体,但最近的研究表明它有一些局限性,特别是在大功率应用中。带隙是基于半导体的电路的相关因素,因为高带隙在高温、电压和频率下的操作方面具有优势。硅的带隙为 1.12 eV,而碳化硅的带隙值高 3 倍,为 3.2 eV,因此性能和效率更高,开关频率更高,总占位面积更小。

SiC MOSFET具有卓越的特性和单极传导机制,这导致它们的尺寸减小并提高了开关性能。此外,当具有相同的电流和电压额定值时,SIC MOSFET 的尺寸可以小于 Si 对应物,正如 Huang 的品质因数1中所推论的那样。由于尺寸更小,整体寄生电容更小,这使得 SiC MOSFET 能够实现高开关速度和低导通电阻。因此,基于 SiC 的转换器在混合动力/电动汽车、太阳能逆变器和不间断电源中具有巨大的应用潜力。

先前的研究表明,SiC 芯片尺寸的显着减小仅针对有源区域。由于位于有源区边界处的边缘电场,无法缩放包围有源区并有助于成功实现近乎理想的雪崩击穿的终止区。一组研究人员开展了工作,分析了从终端区域引入的寄生电容以及它如何影响 SiC MOSFET 的开关损耗。2这项研究部分得到了国家自然科学基金的支持,部分得到了宽带隙半导体电力电子器件国家重点实验室的支持。

分析终端区域中的 SiC MOSFET

在题为“终端区域对 SiC MOSFET 开关损耗的影响”的论文中,研究人员分析了终端区域对寄生电容的影响。简而言之,寄生电容是电子元件或电路的各部分之间由于彼此接近而存在的不可避免但不希望出现的电容。

输入电容、输出电容和反向传输电容都取决于 SiC MOSFET 的所有三个端子之间的电容。由于在栅极总线和源电极之间存在物理重叠,因此栅极下方的氧化层比栅极氧化层厚。由于栅极和漏极之间以及栅极和源极端子之间没有重叠,因此它们对总电容的贡献很小。因此,漏源端电容由有源区和终端区的等效电容组成。

该团队使用 TCAD Sentaurus 来演示寄生电容在 SiC MOSFET 开启和关闭事件期间的工作原理。TCAD Sentaurus 是一种先进的多维仿真器,能够仿真硅基器件的电气、热学和光学特性,用于开发和优化半导体工艺技术。器件两端的电压 (V ds ) 与流经器件的电流 (I ds ) 重叠会导致开关损耗。为了说明 SiC MOSFET 内部的开关过程,通道电流 (I ch ) 通过栅极通道引入。

在导通过程的米勒间隔期间,栅极到漏极电容 (C gd ) 和有源区电容 (C acti ) 由于来自终端中引入的电容的放电电流 (I term ) 的电阻流而放电区域(C项)通过位于有源区的栅极沟道。在此区间内流过栅极沟道的耗散电流或沟道电流 (I ch ) 是终端区中流动的电流 (I term ) 以及有源区电容 (I acti ) 和漏极的放电电流的组合源电流 (I ds )。

而对于关断过程的米勒间隔,一部分漏源电流 (I ds )不是流经栅极沟道,而是开始对有源区和终端区中引入的电容充电(C acti和 C term),如下图所示。此处,耗散通道电流 (I ch ) 不包括 C term和 C acti的电流(即I ch = I ds – I acti – I term)。

结果

开关损耗分为 E ON (I ds )、E acti、E term和 E OFF (I ch )。E ON (I ds )、E acti和 E term的值是比较值,而 E OFF (I ch ) 在各种阻断电压和额定电流下变得非常低。随着更高额定电流的有源区面积的增加,E acti增加了总开关损耗的比例。如果使用相对较弱的栅极驱动器,则 E ON (I ds ) 和 E OFF (Ich ) 会更大。另一方面,E acti和 E term对于特定的 MOSFET 是固定的。对于 SiC MOSFET 的 E OFF,很少有电流流过栅极通道,产生很少的焦耳热,但几乎所有电流都将 C acti和 C项充电为位移电流。这导致较低的 E OFF (I ch ) 值。

结论

使用 TCAD Sentaurus 和考虑终端区域影响的开关损耗模型模拟了对 SiC MOSFET 终端区域的物理洞察。经验证,端接区对开关损耗的影响不容忽视,特别是对于低额定电流 SiC MOSFET。开通损耗的重要组成部分之一是E term和E acti,这是一种本征损耗,与常用的电测量估计相当,甚至更高。

E ON应包括E term和E acti,而E OFF与传统开关损耗估计相比应排除E term和E acti 。对 C项的考虑进一步加剧了对 E ON和 E OFF的低估和高估。不准确的损耗估计可能会影响特定应用的 SiC MOSFET 选择和应用电路设计。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭