当前位置:首页 > 芯闻号 > 充电吧
[导读]1、命令的传输传输层接收到来自于应用层的命令请求后,根据命令的不同将相关寄存器中的信息按照SATA标准协议规定的格式封装为FIS传递给数据链路层。当数据链路层成功接收后,向传输层反馈一个传输完成的状态

1、命令的传输

传输层接收到来自于应用层的命令请求后,根据命令的不同将相关寄存器中的信息按照SATA标准协议规定的格式封装为FIS传递给数据链路层。当数据链路层成功接收后,向传输层反馈一个传输完成的状态标志。传输层接收到来自数据链路层的FIS后,判断该FIS是否有效以及类型。如果是有效的类型,则按照SATA标准协议规定格式进行解析,并将其中的数据映射到对应的寄存器中,然后通知应用层更新相应寄存器的值。如果是无效的类型,则丢弃。就是说,对寄存器的操作,是在传输层完成的。


2、磨损均衡

Flash采取异地更新的策略 ,更新的数据会被放到别的物理页上,而不是覆盖原来的数据。包含新版本数据的页被称为有效页,新版本数据被称为有效数据。包含旧版本数据的页被称为无效页,或称为脏页,脏页经过擦除操作后成为空闲页,才可以重新写入数据。因为Flash是以块为单位执行擦除的,因此需要将脏页所在块上的所有物理页都擦除,在擦除之前需要检查此块上是否存在有效页,如果存在就必须先转移到其他块上。因为每个Flash块的擦除次数有限,一般是在10 万次到100万次之间,只要有块的擦除次数达到了上限,Flash数据存储的性能将下降。所以必须想办法,使擦除操作平均作用在每个Flash块上,这种方法就是磨损均衡(wear-leveling)算法。

我们在应用Flash时,实际上访问的是Flash的逻辑地址,在逻辑地址和物理地址之间,存在着映射关系。数据更新后只需改变映射表中物理页的地址,并将原版本数据所在的物理页标为无效。对于经常被更新的数据块,我们称之为“热”数据块,对长期得不到更新的数据块,称之为“冷”数据块。数据块经常更新的话,就会经常被擦除,而长期不更行的数据块,不会出现脏页而被擦除,其擦除次数会明显少于存放着经常被更新数据的块。如何实现“冷热”数据存放位置的交换是磨损均衡处理中需要考虑的问题。

3、磨损均衡算法

目前常用的磨损均衡算法大致分为两类,一类是随机性算法,一类是确定性算法。

▪对于随机性算法,其原理为:在每次写或擦除操作后,按照某一概率来触发磨损均衡处理。按照均匀分布的概率,随机选择某个块执行擦除操作。不论块上放的是“冷”数据还是“热”数据,让每个块得到相等的擦除机会。最后将选中块上的有效数据复制到空块后擦除此块。将数据移动到哪个空闲块上,也是随机选择,因为没有记录块的擦除情况,存在将“冷”数据又移动到一个“冷”块上的情况,结果此块并没有增加擦除次数, 这种情况尤其会发生在有大量“冷”数据的系统里。

▪对于确定性算法,又分为周期性和全局性两种,其中周期性算法的原理为:将Flash的寿命看做是一个接一个的磨损均衡周期组成的。在一个处理周期中,达到规定的擦除次数的块在这一轮周期中将不会被选中,这样可使各个块都达到相同的擦除次数,再开始下一个擦除周期。通过调整Flash块的规定擦除次数,可以使整个Flash能够达到理想的磨损均衡。全局性算法的原理为:不划分处理周期,在一个全局范围内控制块的磨损均衡。当任何两个块的擦除次数之差超过一个给定的阈值时,或者当某块的擦除次数超过了所有块的平均擦除次数时,启动磨损均衡处理,将擦除次数少的块上的数据和擦除次数多的块上的数据进行交换。如果块上存放的是“冷”数据,即数据很少被更新,则该块上的数据不易变脏,很少得到擦除的机会。相反,如果该块上存放的是“热”数据,则该块上的数据经常被更新,经常得到擦除脏数据的机会。根据这个原理来交换“冷热”数据,从而实现磨损均衡。

对比两类磨损均衡算法,可以看出:随机性算法的效果受随机因素影响较大,在擦除前,并不知道各个块被擦除的情况,同时对逻辑页的随机性请求并不能做到完全等概率,所以虽然随机性算法是等概率地选择处理页,但每个块的擦除次数并不能达到等概率分布,不能达到很好的磨损均衡效果。确定性算法因记录了物理块的擦除次数,故在处理中可根据这些信息来作出调整决策,各块基本达到了相近的擦除次数,磨损均衡的效果明显好于随机性算法。但这是在消耗大量内存开销的基础上实现的。

根据以上讨论的情况,可以看出,必须结合两类算法的优势,来实现效果较好的磨损均衡处理,才能既保证Flash的读写速度,又能保证Flash的使用寿命,这将是决定固态存储能否全面战胜机械硬盘的关键之战。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭