当前位置:首页 > > 充电吧
[导读]Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的「La」)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。Paxos算法一开始非常难以理解,但是一旦

Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的「La」)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。

Paxos算法一开始非常难以理解,但是一旦理解其实也并不难,之所以难理解其实是因为作者讲的故事难理解。

Paxos算法维基百科https://en.wikipedia.org/wiki/Paxos_(computer_science)

网上有2篇帖子是讲的非常好的,

分别是:以两军问题为背景来演绎Basic Paxos和Paxos算法细节详解(一)--通过现实世界描述算法

本人是在看了这2个帖子之后再结合原论文才看懂的。


Paxos一共4个角色:Client   Proposer      Acceptor     Learner。

Client:产生议题者
Proposer :提议者
Acceptor:决策者
Learner:最终决策学习者,也就是执行者。


Proposer拿着Client的议题去向Acceptor提议,让Acceptor来决策。
Proposer提出议题,Acceptor初步接受或者Acceptor初步不接受。
Acceptor初步接受则Proposer再次向Acceptor确认是否最终接受。
Acceptor最终接受或者Acceptor最终不接受。

Learner最终学习的目标是向所有Acceptor学习,如果有多数派个Acceptor最终接受了某提议,那就得到了最终的结果,算法的目的就达到了。


最基本的Message flow: Basic Paxos演示图如下图所示,其他情况可以参考百科。



图解:

A1,,A2和A3就是Acceptor。

P1,p2和p3就是Proposer。浅色的P1和P2说明是进行提议,深色的P1和P2说明是拿到表决。

圆圈123表明是每次提议序号,递增即可。黑色的图表示被黑了,也就是否决。方块表示投票结果,绿方块表示投票通过,红色菱形表示最终的投票结果。

整个事件是按照时间线从左到右发展。


事件发展:

第一个框代表第一阶段--提议

1.p2最先找到A2,P2提议序号是2,A2记录下,因为之前没有其他的序号所以成功了,然后返回标志给p2;

2.p1找到A1,P1提议序号是1,A1记录下,因为之前没有其他的序号所以成功了,然后返回标志给p1;

3.p1找到A3,P1提议序号是1,A3记录下,因为之前没有其他的序号所以成功了,然后返回标志给p1;

问题来了

4.p1找到A2,P1提议序号是1,A2已经记录下提议序号2,2>1,所以不成功;


5.p2找到A1,P2提议序号是2,A1已经记录下提议序号1,1>2,所以成功;,然后返回标志给p2;

6.p2找到A3,P2提议序号是2,A3已经记录下提议序号1,1>2,所以成功;,然后返回标志给p2;


第二个框代表第二阶段--确认提议(投票)


7.p1找到A1,P1确认序号是1,A1已经记录下提议序号2,1<2,所以不确认,然后p1继续提议序号是3,周而复始...;

8.p2找到A2,P2确认序号是2,A2已经记录下提议序号2,2=2,所以确认成功;,然后返回投票标志给p2;

9.p2找到A3,P2确认序号是2,A3已经记录下提议序号2,2=2,所以确认成功;,然后返回投票标志给p2;

10.p2找到A1,P2确认序号是2,A1已经记录下提议序号3,2<3,所以不确认,;然后p2继续提议序号是4,周而复始...;
问题来了


11.p1找到A2,P1确认序号是1,A1已经记录下确认序号2,1<2,所以不确认,然后返回确认序号2;

12.p1找到A3,P1确认序号是1,A3已经记录下确认序号2,1<2,所以不确认,然后返回确认序号2;

13.p1和p2都得到确认也就是投票结果是2。

14.所有的Learner最终学习的目标是2。


Paxos过程结束了,这样,一致性得到了保证,算法运行到最后所有的proposer都投“2”所有的acceptor都接受这个议题,也就是说在最初的第二阶段,议题是先入为主的,谁先占了先机,后面的proposer在第一阶段就会学习到这个议题而修改自己本身的议题,才能让一致性得到保证,这就是paxos算法的一个过程。该算法就是为了追求结果的一致性。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭