当前位置:首页 > 半导体 > Arm
[导读]新闻重点: ·宣布将bfloat16数据格式加入下一版本的Armv8-A架构,大幅提升基于Arm IP CPU在机器学习的训练与推论效能。 ·次世代的Neoverse Zeus "(宙斯)平台将支持bfloat16功能,可为AI运算带来更佳的机器学习能力与运行时间。 ·推出Project Cassini, 将与Arm的生态系统伙伴合作,开发平台标准与参考系统,并以它们为基础,在目前已延展到基础设施边缘的标准化平台安全架构(PSA)框架内,无缝部署云端原生的软件堆栈。

第五波计算技术的融合——人工智能(AI)、5G与物联网(IoT)——正持续加速令人惊讶的变化,并驱动全新的数据消费模型。在仅考虑IoT的情况:尽管还在发展初期,我们看到它已经褪去全球微型传感器网络的原始面貌,进一步扩展至包含更多高性能设备,包括从智能影像传感器到自驾汽车。

随着IoT持续成长并带动全球数字化转型,通往上游云端的数据海啸,让长期以来针对下游分配优化的网络基础设施遭受打击。它也促生了一个迫切的需求,即在全球互联网架构内实现更分散的算力分布,而这也导致对Arm Neoverse计算解决方案的需求与日俱增。整个生态系统已经对这个挑战作出响应,而纵观Arm过去一年内的进展,Neoverse正在将其初始愿景转换成今日之现实。

AI从云端扩散,“宙斯”枕戈待旦

展望未来,Arm将专注于为下一代基础设施技术奠定基础,其中的重中之重是AI的去中心化。

由于大型数据集与专属的算力相当集中的缘故,今日大负荷的AI计算多数在云端完成,特别是机器学习(ML)模型的训练。但若把这些模型应用到真实世界中靠近决策点的推论时,以云端为中心的AI模型就会捉襟见肘。数据传输数千英里来到数据中心进行模型比较时,可能会碰到不少延时的问题,因此,没有人能保证当结果返回时仍然对决策有用。时间至关重要,因此把“智能”从云端分配到边缘,就显得合情合理。

得益于已经面世的各种解决方案——从云端与基础设施都在使用都Arm Neoverse平台和AI加速技术,到专门迎合各种端点需求的、具备AI能力的Arm CPU、NPU和GPU——Arm与其合作伙伴在让AI赋能互联网各个层级应用方面具有先天优势。但Arm认为这还不够。Arm最近宣布将把bfloat16数据格式加入下一个版本的Armv8-A架构中,这将大幅提升基于Arm架构的CPU的训练与推理性能。Arm已经确认将对bfloat16的支持加入计划将于明年推出的Neoverse "Zeus"(宙斯)平台。

在边缘扩展计算

随着对决策的要求朝边缘移动,AI将扮演双重角色。除了依据数据本身包含的信息作出及时决定之外,当大量的数据需要被导引至正确的位置时,AI需要在从流量管理到封包检验等方面都发挥作用。这是一个训练与推论兼顾的问题,而传统的计算系统无法与之相适应。过去,互联网边缘传统上只是一个网桥,现在正快速变成智能计算平台,并最终将促成我们称之为AI Edge的浮现,并在2025年形成一个高达300亿美元的计算芯片潜在市场规模(TAM)。

在边缘执行AI有几个好处:它可显著减少到云端的回程,降低延迟,并提升可靠性、效率与安全性。有鉴于当今来自全球设备部署的洞见来得极快,模型必须需要实时进化,这点已经显现出至关重要性。

赋能AI边缘:推出Project Cassini

利用AI边缘的应用程序的成功部署,关键在于提供能够覆盖各种功耗与性能需求的多元解决方案。单一厂商的解决方案,并无法满足所有需求。除了变成以AI为中心,AI边缘必须是云端原生的、虚拟化(VM或containers)的,同时支持多用户。最重要的是,它必须是安全无虞。

目前构成基础架构边缘的解决方案来自一个极度多元化的生态系统,而这个生态系统也在迅速变革,以满足这些新产生的需求。为了协助大家面对这一AI边缘的变革,Arm宣布推出Project Cassini:这是一个专注于在多元与安全的边缘生态系统内,确保云端原生体验的业界提案。

通过与Arm生态合作伙伴的协同努力,Project Cassini将专注于基础设施边缘,开发平台标准与参考系统,并以它们为基础,在目前已延展到基础设施边缘的标准化平台安全架构(PSA)框架内,无缝部署云端原生的软件堆栈。值得一提的是, Arm与其生态系统合作伙伴针对安全性做出了大量努力。两年前Arm推出PSA,让企业得以依据一套通用的需求设计安全功能,以降低打造产品级IoT安全性相关的成本、时间与风险。今天,Project Cassini将PSA延展至基础设施边缘,可谓更上层楼,目标是让所有最基本的安全需求标准化。

持续演进的挑战

Arm预计,到2035年全球将有一万亿个IoT设备,这将带来全新规模的基础设施与架构上的挑战,技术也需要与时俱进才足以应对。在边缘计算方面,这意味着Arm将持续大量投资硬件、软件与工具的开发,以便为基础设施堆栈的每一个点都赋予智能决策能力。另一方面,这也意味着在处理器层级,以及从云端到边缘到终端设备的整个网络内,都将广泛使用异构计算。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭