当前位置:首页 > 芯闻号 > 充电吧
[导读]STM32——系统滴答定时器一、SysTick【内核中】【风格:先描述一下库对寄存器的封装,再举例实现某些功能】        SysTick定时器被捆绑在NVIC中,用于产生SysTick异常(异常

STM32——系统滴答定时器


一、SysTick【内核中】

【风格:先描述一下库对寄存器的封装,再举例实现某些功能】

        SysTick定时器被捆绑在NVIC中,用于产生SysTick异常(异常号: 15)。在以前,操作系统还有所有使用了时基的系统,都必须一个硬件定时器来产生需要的“滴答”中断,作为整个系统的时基。滴答中断对操作系统尤其重要。例如,操作系统可以为多个任务许以不同数目的时间片,确保没有一个任务能霸占系统;或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。
        Cortex-M3处理器内部包含了一个简单的定时器。因为所有的CM3芯片都带有这个定时器,软件在不同 CM3器件间的移植工作就得以化简。该定时器的时钟源可以是内部时钟( FCLK, CM3上的自由运行时钟),或者是外部时钟(CM3处理器上的STCLK信号)。不过, STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能会大不相同。因此,需要检视芯片的器件手册来决定选择什么作为时钟源。SysTick定时器能产生中断, CM3为它专门开出一个异常类型,并且在向量表中有它的一席之
地。它使操作系统和其它系统软件在CM3器件间的移植变得简单多了,因为在所有CM3产品间,SysTick的处理方式都是相同的。

 

2、工作流程

        SysTick 是一个 24 位的定时器, 即一次最多可以计数 224 个时钟脉冲,这 个脉冲计数值被保存到 当前计数值寄存器 STK_VAL中,只能向下计数,每接收到一个时钟脉冲 STK_VAL 的值就向下减1,直至 0,当 STK_VAL 的值被减至 0 时,由硬件自动把重载寄存器STK_LOAD中保存的数据加载到 STK_VAL,重新向下计数。当 STK_VAL 的值被计数至 0 时,触发异常,就可以在中断服务函 数中处理定时事件了。

 

三、10us定时器

所谓的定时器中断就是指定时多长时间中断触发一次,此例中10us产生一次中断。


#include "SysTick.h"

static __IO u32 delay_time;

void SysTickInit(void)
{
  /* SystemFrequency / 1000    1ms中断一次
   * SystemFrequency / 100000  10us中断一次
   * SystemFrequency / 1000000 1us中断一次
   */
  /* SysTick_Config()内核层core_cm3.h 中
  这个函数启动了 SysTick timer;并把它配置为计数至 0 时引起中断;输入的参数 ticks 为两个中断之间的脉冲数,
  即相隔ticks 个时钟周期会引起一次中断;配置 SysTick 成功时返回 0,出错进返回 1。
  */
  if (SysTick_Config(SystemCoreClock / 100000))
  {
    while (1);
  }
  // 关闭滴答定时器
  SysTick->CTRL &= ~ SysTick_CTRL_ENABLE_Msk;
}

// 所以总的延时时间 T 延时= T 中断周期 * time
void DelayUs(__IO u32 time)
{
  delay_time = time;

  // 使能滴答定时器
  SysTick->CTRL |=  SysTick_CTRL_ENABLE_Msk;

  while(count != 0);
}

//在 SysTick 中断函数 SysTick_Handler()调用
void SysTickInterrupt(void)
{
  if (delay_time != 0x00)
  {
    delay_time--;
  }
}

// 中断程序在 stm32f10x_it.c 中实现:
void SysTick_Handler(void)
{
   SysTickInterrupt();
}




本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

74LS175是一款4D触发器集成电路,它包含6个D触发器,这些触发器可以组合起来形成寄存器或抢答器等多种功能部件。

关键字: 74ls175 触发器 寄存器

单片机复位电路的作用是:使单片机恢复到起始状态,让单片机的程序从头开始执行,运行时钟处于稳定状态、各种寄存器、端口处于初始化状态等等。

关键字: 复位电路 单片机 寄存器

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信
关闭
关闭