当前位置:首页 > > 充电吧
[导读]生产者消费者模型已经很古老了吧,最近写了个OpenMP版的此模型之实现,来分享下。先说一下模型的大致做法是:1、生产者需要取任务,生产产品。2、消费者需要取产品,消费产品。生产者在生产某个产品之后,要

生产者消费者模型已经很古老了吧,最近写了个OpenMP版的此模型之实现,来分享下。

先说一下模型的大致做法是:

1、生产者需要取任务,生产产品。

2、消费者需要取产品,消费产品。


生产者在生产某个产品之后,要告知消费者此产品已经可以使用了。消费者通过获得可以使用这个信号来取得产品,进一步消费产品。


比如,我们有N个图像需要对每一个图像作滤波或者变换等处理,并且把处理后的结果存到硬盘上。

那么生产者可以将N个图像看成N个任务,每个任务都是独立的,每个任务的计算结果可以看成是产品,消费者就是取这个产品来写入硬盘。


先贴出一个实例代码再作解释。


#include#include#include#include#include#define jobs 1000
#define sz 102000

#if defined(_WIN32) && defined(_MSC_VER)
#includedouble abtic() {
	__int64 freq;
	__int64 clock;
	QueryPerformanceFrequency( (LARGE_INTEGER *)&freq );
	QueryPerformanceCounter( (LARGE_INTEGER *)&clock );
	return (double)clock/freq*1000*1000;
}
#else
#include#includedouble abtic() {
	double result = 0.0;
	struct timeval tv;
	gettimeofday( &tv, NULL );
	result = tv.tv_sec*1000*1000 + tv.tv_usec;
	return result;
}
#endif /* _WIN32 */

#if 1
double timer;
#define ABTMS timer=abtic();fprintf(stdout,"%4d  ",__LINE__)
#define ABTME fprintf(stdout,"%4d  %8.8fmsn",__LINE__,(abtic()-timer)/1000.0f)
#else
#define ABTMS 
#define ABTME 
#endif

int main()
{
  char *jbNotReady;
  double *a;
  double *as;
  double *pa;
  int j, k;
	char jbnr;

  a = (double*)malloc(sz*jobs*sizeof(double));
  as = (double*)malloc(jobs*sizeof(double));
  jbNotReady = (char*)malloc(jobs*sizeof(char));

  for (j = 0; j < jobs; j++)
  {
    jbNotReady[j] = 1;
    
  }
  memset(a, 0, sz*jobs*sizeof(double));
  memset(as, 0, jobs*sizeof(double));
  ABTMS;
#pragma omp parallel sections private(j,k,pa) shared(jbNotReady,as,a)
  {
    // producer
#pragma omp section
    {
      for (j = 0; j < jobs; j++)
      {
        pa = a+j*sz;
        for (k = 0; k < sz; k++)
        {
          pa[k] = 1.0;
        }
        jbNotReady[j] = 0;
#pragma omp flush
      }
    }
    // consumer
#pragma omp section
    {
      for (j = 0; j < jobs; j++)
      {
#pragma omp flush
        while (jbNotReady[j]){
#pragma omp flush
				}
        as[j] = 0.0;
        pa = a+j*sz;
        for (k = 0; k < sz; k++)
        {
          as[j] += pa[k];
        }
        if ((int)(as[j])!=sz)fprintf(stdout, "job id %3d :%fn", j, as[j]);
      }
    }
  }
  ABTME;
  free(a);
  free(as);
  free(jbNotReady);
  return 0;
}


源代码中,第一个section创建的线程扮演的就是生产者的角色,第二个section扮演消费者角色。j这个变量模拟的是任务编号,第一个section中的循环模拟产生产品。第二个section每次取一个任务,而且是顺序取,通过验证任务是否已经准备好来获得正确的产品。

使用flush制导语句是为了将每个线程的缓存和内存强制保持一致,注意生产者向jbNotReady里写,而消费者只是读数据,不会出现内存中的数据写后读,读后写的问题,每个线程获得的数据都是安全的。


以上代码支持Windows和Linux,GCC4.4以后的版本都可以执行,Windows下只要支持OpenMP的编译器,都可行。




本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭