当前位置:首页 > > 充电吧
[导读]1) int型变量循环左移k次,即a=a <(13)求从x位(高)到y位(低)间共有多少个1public static int FindChessNum(int x, int y, ushort

1) int型变量循环左移k次,即a=a <

(13)求从x位(高)到y位(低)间共有多少个1

public static int FindChessNum(int x, int y, ushort k) 
        { 
            int re = 0; 
            for (int i = y; i <= x; i++) 
            { 
                re += ((k >> (i - 1)) & 1); 
            } 
            return re; 
        } 
(14)
/*将32位数分解为4个8位数处理后再合成32位数返回*/
DWORD GetDW(DWORD dw)
{
 DWORD dwRet=0;
 if (dw!=0)
 {
  BYTE b1=(dw>>24)&0xff,b2=(dw>>16)&0xff,b3=(dw>>8)&0xff,b4=dw&0xff;
  //分别处理 b1,b2,b3,b4
  dwRet=b1;
  dwRet=(dwRet<<8)+b2;
  dwRet=(dwRet<<8)+b3;
  dwRet=(dwRet<<8)+b4;

  return dwRet;
 }
 else{
  return 0;
 }
}


  检测一个无符号数是不为2^n-1(^为幂):   x&(x+1)   
    
  将最右侧0位改为1位:   x   |   (x+1)   
    
  二进制补码运算公式:   
  -x   =   ~x   +   1   =   ~(x-1)   
  ~x   =   -x-1     
  -(~x)   =   x+1   
  ~(-x)   =   x-1   
  x+y   =   x   -   ~y   -   1   =   (x|y)+(x&y)     
  x-y   =   x   +   ~y   +   1   =   (x|~y)-(~x&y)     
  x^y   =   (x|y)-(x&y)   
  x|y   =   (x&~y)+y   
  x&y   =   (~x|y)-~x   
    
  x==y:         ~(x-y|y-x)   
  x!=y:         x-y|y-x   
  x<   y:         (x-y)^((x^y)&((x-y)^x))   
  x<=y:         (x|~y)&((x^y)|~(y-x))   
  x<   y:         (~x&y)|((~x|y)&(x-y))//无符号x,y比较   
  x<=y:         (~x|y)&((x^y)|~(y-x))//无符号x,y比较   
    
    
  使用位运算的无分支代码:   
    
  计算绝对值   
  int   abs(   int   x   )     
  {   
  int   y   ;   
  y   =   x   >>   31   ;   
  return   (x^y)-y   ;//or:   (x+y)^y   
  }   
    
  符号函数:sign(x)   =   -1,   x

CC++支持比较低阶的位运算,在是众人皆知的了。每本CC++的教科书都会说到这部分的内容,不过都很简略,我想会有很多人不知道位运算用在什么地方。这个帖子就简略说说位运算的用处,更进一步的用法要大家自己去体会。而主要说的是操作标志值方面。

 

 /****************************************/

#define BTI_MSK(bit)    (1 << (bit))
#define BIT_SET(x,bit)  ((x) |=  BTI_MSK (bit))
#define BIT_CLR(x,bit)  ((x) &= ~BTI_MSK (bit))
#define BIT_TST(x,bit)  ((x) &   BTI_MSK (bit))

 /****************************************/

 

考虑一个事物、一个系统、或者一个程序可能会出现一种或者几种状态。为了在不同的状态下,作出不同的行为,你可以设立一些标志值,再根据标志值来做判断。比如C++的文件流,你就可以设定一些标志值,ios::app, ios::ate, ios::binary, ios::in, ios::out, ios::trunc,并且可以将它用|组合起来创建一个恰当的文件流。你可能会将这些标志值定义为bool类型,不过这样要是设置的标志值一多,就会很浪费空间。

而假如定义一个整型数值,unsigned int flags; 在现在的系统,flags应该是32位, 用1,2,3....32将位进行编号,我们可以进行这样的判断, 当位1取1时,表示用读方式打开文件,当位2取1时,表示用写方式打开文件,当位3取1时,用二进制方式打开文件....因为flags有32位,就可以设置32个不同的状态值,也相当于32个bool类型。这样一方面省了空间, 另一方面也多了个好处,就是如前面所说的,可以将标志值组合起来。
//>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

好啦,上面有点不清不楚的。下面看看到底怎么操作这些标志值。
设想C++的类ios这样定义, 其实没有这个类,只有ios_basic类,typedef basic_ios

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭