当前位置:首页 > > 充电吧
[导读]主要内容:gOMP的算法流程gOMP的MATLAB实现一维信号的实验与结果稀疏度K与重构成功概率关系的实验与结果。一、gOMP的算法流程广义正交匹配追踪(Generalized OMP, gOMP)算

主要内容:

gOMP的算法流程gOMP的MATLAB实现一维信号的实验与结果稀疏度K与重构成功概率关系的实验与结果。

一、gOMP的算法流程

广义正交匹配追踪(Generalized OMP, gOMP)算法可以看作为OMP算法的一种推广。OMP每次只选择与残差相关最大的一个,而gOMP则是简单地选择最大的S个。之所以这里表述为"简单地选择"是相比于ROMP之类算法的,不进行任何其它处理,只是选择最大的S个而已。

gOMP的算法流程:

二、gOMP的MATLAB实现(CS_gOMP.m)

function [ theta ] = CS_gOMP( y,A,K,S )
%   CS_gOMP
%   Detailed explanation goes here
%   y = Phi * x
%   x = Psi * theta
%    y = Phi*Psi * theta
%   令 A = Phi*Psi, 则y=A*theta
%   现在已知y和A,求theta
%   Reference: Jian Wang, Seokbeop Kwon, Byonghyo Shim.  Generalized 
%   orthogonal matching pursuit, IEEE Transactions on Signal Processing, 
%   vol. 60, no. 12, pp. 6202-6216, Dec. 2012. 
%   Available at: http://islab.snu.ac.kr/paper/tsp_gOMP.pdf
    if nargin < 4
        S = round(max(K/4, 1));
    end
    [y_rows,y_columns] = size(y);
    if y_rowsM
            if ii == 1
                theta_ls = 0;
            end
            break;
        end
        At = A(:,Sk);%将A的这几列组成矩阵At
        %y=At*theta,以下求theta的最小二乘解(Least Square)
        theta_ls = (At'*At)^(-1)*At'*y;%最小二乘解
        %At*theta_ls是y在At)列空间上的正交投影
        r_n = y - At*theta_ls;%更新残差
        Pos_theta = Sk;
        if norm(r_n)<1e-6
            break;%quit the iteration
        end
    end
    theta(Pos_theta)=theta_ls;%恢复出的theta
end

三、一维信号的实验与结果

%压缩感知重构算法测试
clear all;close all;clc;
M = 128;%观测值个数
N = 256;%信号x的长度
K = 30;%信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y

%% 恢复重构信号x
tic
theta = CS_gOMP( y,A,K);
x_r = Psi * theta;% x=Psi * theta
toc

%% 绘图
figure;
plot(x_r,'k.-');%绘出x的恢复信号
hold on;
plot(x,'r');%绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('n恢复残差:');
norm(x_r-x)%恢复残差

四、稀疏数K与重构成功概率关系的实验与结果

%   压缩感知重构算法测试CS_Reconstuction_KtoPercentagegOMP.m
%   Reference: Jian Wang, Seokbeop Kwon, Byonghyo Shim.  Generalized 
%   orthogonal matching pursuit, IEEE Transactions on Signal Processing, 
%   vol. 60, no. 12, pp. 6202-6216, Dec. 2012. 
%   Available at: http://islab.snu.ac.kr/paper/tsp_gOMP.pdf

clear all;close all;clc;
addpath(genpath('../../OMP/'))

%% 参数配置初始化
CNT = 1000; %对于每组(K,M,N),重复迭代次数
N = 256; %信号x的长度
Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
M_set = [128]; %测量值集合
KIND = ['OMP      ';'ROMP     ';'StOMP    ';'SP       ';'CoSaMP   ';...
    'gOMP(s=3)';'gOMP(s=6)';'gOMP(s=9)'];
Percentage = zeros(N,length(M_set),size(KIND,1)); %存储恢复成功概率

%% 主循环,遍历每组(K,M,N)
tic
for mm = 1:length(M_set)
    M = M_set(mm); %本次测量值个数
    K_set = 5:5:70; %信号x的稀疏度K没必要全部遍历,每隔5测试一个就可以了
    %存储此测量值M下不同K的恢复成功概率
    PercentageM = zeros(size(KIND,1),length(K_set));
    for kk = 1:length(K_set)
       K = K_set(kk); %本次信号x的稀疏度K
       P = zeros(1,size(KIND,1));
       fprintf('M=%d,K=%dn',M,K);
       for cnt = 1:CNT  %每个观测值个数均运行CNT次
            Index_K = randperm(N);
            x = zeros(N,1);
            x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
            Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
            A = Phi * Psi; %传感矩阵
            y = Phi * x; %得到观测向量y
            %(1)OMP
            theta = CS_OMP(y,A,K); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(1) = P(1) + 1;
            end
            %(2)ROMP
            theta = CS_ROMP(y,A,K); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(2) = P(2) + 1;
            end
            %(3)StOMP
            theta = CS_StOMP(y,A); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(3) = P(3) + 1;
            end
            %(4)SP
            theta = CS_SP(y,A,K); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(4) = P(4) + 1;
            end
            %(5)CoSaMP
            theta = CS_CoSaMP(y,A,K); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(5) = P(5) + 1;
            end
            %(6)gOMP,S=3
            theta = CS_gOMP(y,A,K,3); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(6) = P(6) + 1;
            end
            %(7)gOMP,S=6
            theta = CS_gOMP(y,A,K,6); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(7) = P(7) + 1;
            end
            %(8)gOMP,S=9
            theta = CS_gOMP(y,A,K,9); %恢复重构信号theta
            x_r = Psi * theta; % x=Psi * theta
            if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                P(8) = P(8) + 1;
            end
       end
       for iii = 1:size(KIND,1)
           PercentageM(iii,kk) = P(iii)/CNT*100; %计算恢复概率
       end
    end
    for jjj = 1:size(KIND,1)
        Percentage(1:length(K_set),mm,jjj) = PercentageM(jjj,:);
    end
end
toc
save KtoPercentage1000gOMP %运行一次不容易,把变量全部存储下来

%% 绘图
S = ['-ks';'-ko';'-yd';'-gv';'-b*';'-r.';'-rx';'-r+'];
figure;
for mm = 1:length(M_set)
    M = M_set(mm);
    K_set = 5:5:70;
    L_Kset = length(K_set);
    for ii = 1:size(KIND,1)
        plot(K_set,Percentage(1:L_Kset,mm,ii),S(ii,:)); %绘出x的恢复信号
        hold on;
    end
end
hold off;
xlim([5 70]);
legend('OMP','ROMP','StOMP','SP','CoSaMP',...
    'gOMP(s=3)','gOMP(s=6)','gOMP(s=9)');
xlabel('Sparsity level K');
ylabel('The Probability of Exact Reconstruction');
title('Prob. of exact recovery vs. the signal sparsity K(M=128,N=256)(Gaussian)');

结论:gOMP只是在OMP基础上修改了一下原子选择的个数,效果就好很多。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭