当前位置:首页 > > 充电吧
[导读]一、系统复位 复位除了部分RCC寄存器和备份区域以外的其他所有的寄存器; 来源: NRST引脚上的低电平(外部复位) WWDG计数结束 IWDG计数

一、系统复位
复位除了部分RCC寄存器和备份区域以外的其他所有的寄存器;

来源: NRST引脚上的低电平(外部复位) WWDG计数结束 IWDG计数结束 软件复位(通过NVIC) 低电压管理的复位

电源复位

复位除了备份区域以外所有的寄存器; 来源: 上电/掉电复位(POR/PDR复位) 退出STANDBY模式

软件复位

通过将Cortex-M3中断应用和复位控制寄存器中的SYSRESETREQ位置1。



低功耗管理复位

在进入待机模式时,系统产生低功耗管理复位:
设置选择字中的nRST_STDBY位为1。
在进入停止模式时,系统产生低功耗管理复位:
设置选择字中的nRST_STOP位为1。


备份区域的复位

复位所有的备份区域; 复位源:
设置RCC的BDCR寄存器的BDRST位;
如果VDD和VBAT都已掉电,二者再次上电。

二、时钟
外部高速振荡器(HSE):4MHz到16MHz主振荡器,可通过PLL进行倍频用以提供宽广的频率范围。

可使用外部时钟信号(最大25MHz):设置时钟控制寄存器的HSEBYP和HSEON位。

内部高速RC振荡器(HSI):频率为8MHz,温度在0-70°C时误差位为±1%。(出厂时进行校准,工厂校准值被装载到时钟控制寄存器的HSICAL[7:0]位)

为了节省功耗,运行后可以关闭内部RC振荡器:清除HISON位; 复位或从停止模式退出后,用作MCU的系统时钟,可快速启动(启动时间:最大2us); 如果应用基于不同的电压或环境温度,将会影响RC振荡器的精度。可通过利用时钟控制寄存器里的HSITRIM[4:0]位来调整HSI频率; 当HSE失效时,HSI将被切换为系统时钟源(如果HSI被关闭,硬件将其开启);
注: 当HSI被用作PLL的时钟输入时,最大系统时钟可达64MHz。

外部低速振荡器(LSE): 32.768kHz振荡器,提供一个极低功耗(最大1?A)的精确的时钟。可选用为驱动RTC从停止/待机模式中唤醒。

通过备份域控制寄存器(RCC_BDCR)里的LSEON位启动和关闭。
可用外部时钟信号 --- 具有50%占空比的外部时钟信号(方波、正弦波或三角波)连到OSC32_IN管脚,同时保证OSC32_OUT管脚悬空。


内部低速RC(LSI): 40KHz的内部RC,可用作IWDG和自动唤醒的RTC的时钟。

通过控制/状态寄存器(RCC_CSR)里的LSION位来启动或关闭。 LSI校准:(仅大容量产品有)
可以通过校准内部低速振荡器LSI来补偿其频率偏移,获得精度可接受的RTC时间基数,以及独立看门狗(IWDG)的超时时间(当这些外设以LSI为时钟源)。


三、时钟配置
系统时钟源(SYSCLK):

HSI HSE PLL:
注:在激活PLL的设置时,必须先完成选择HSI振荡器除2或HSE振荡器为PLL的输入时钟,和选择倍频因子。

RTC时钟源(RTCCLK):

LSE LSI 经过128分频的HSE时钟

当HSE时钟失效时,时钟安全系统将系统(CSS)时钟切换到使用备用时钟HSI。

通过软件使能,将该中断连接到CortexM3内核的NMI中断上。(不可屏蔽中断)

在MCO引脚(PA.08)可将时钟输出。

最大可达50MHz

多个时钟源可实现全速运行/低功耗模式下的复杂应用。 可配置分频器为AHB、APB1/2、ADC、TIM提供时钟。

HCLK --- Cortex-M3内核、AHB总线、内存、DMA

USB时钟源(USBCLK)由内部的PLL倍频提供。

使用USB接口时,PLL必须被设置为输出48或72MHZ时钟。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭