当前位置:首页 > > 充电吧
[导读]在windows的通用开发平台上,有MFC或者STL的支持,很少自己去编写一个链表list程序。现在把Linux下的list.h取出来,在Windows平台上实现:我这里用的是Linux2.4版本的,

在windows的通用开发平台上,有MFC或者STL的支持,很少自己去编写一个链表list程序。现在把Linux下的list.h取出来,在Windows平台上实现:


我这里用的是Linux2.4版本的,2.6版本的其实都一样,下面是修改后的list.h源文件,注意几点:① 注释掉了和Linux相关的字眼,如第四行、第六行等,添加了prefetch(w)两个函数的实现;② 因为是在C语言下实现(不是C++),VC6-VC2005-VC2010编译器均不支持C99,而这些编译器遵循的C89规范里不支持inline关键字,所以关键字inline要去掉,直接查找替换为无即可,这一点和gcc的编译器不同;③ C语言里,函数中所有的变量定义一定要放在函数的开始部分,一次性定义完毕,不要在函数体内再定义变量,这一点高版本的VS2010也是如此。


#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

//#if defined(__KERNEL__) || defined(_LVM_H_INCLUDE)

//#includevoid prefetch(const void *x) {;} 

 void prefetchw(const void *x) {;} 

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

struct list_head {
	struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) 
	struct list_head name = LIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { 
	(ptr)->next = (ptr); (ptr)->prev = (ptr); 
} while (0)

/*
 * Insert a new entry between two known consecutive entries. 
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static  void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static  void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static  void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static  void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty on entry does not return true after this, the entry is in an undefined state.
 */
static  void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = (void *) 0;
	entry->prev = (void *) 0;
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static  void list_del_init(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	INIT_LIST_HEAD(entry); 
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static  void list_move(struct list_head *list, struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static  void list_move_tail(struct list_head *list,
				  struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static  int list_empty(struct list_head *head)
{
	return head->next == head;
}

static  void __list_splice(struct list_head *list,
				 struct list_head *head)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;
	struct list_head *at = head->next;

	first->prev = head;
	head->next = first;

	last->next = at;
	at->prev = last;
}

/**
 * list_splice - join two lists
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static  void list_splice(struct list_head *list, struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static  void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) 
	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop counter.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) 
	for (pos = (head)->next, prefetch(pos->next); pos != (head); 
        	pos = pos->next, prefetch(pos->next))
/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop counter.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) 
	for (pos = (head)->prev, prefetch(pos->prev); pos != (head); 
        	pos = pos->prev, prefetch(pos->prev))
        	
/**
 * list_for_each_safe	-	iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop counter.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head) 
	for (pos = (head)->next, n = pos->next; pos != (head); 
		pos = n, n = pos->next)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop counter.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)				
	for (pos = list_entry((head)->next, typeof(*pos), member),	
		     prefetch(pos->member.next);			
	     &pos->member != (head); 					
	     pos = list_entry(pos->member.next, typeof(*pos), member),	
		     prefetch(pos->member.next))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop counter.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)			
	for (pos = list_entry((head)->next, typeof(*pos), member),	
		n = list_entry(pos->member.next, typeof(*pos), member);	
	     &pos->member != (head); 					
	     pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_continue -       iterate over list of given type
 *                      continuing after existing point
 * @pos:        the type * to use as a loop counter.
 * @head:       the head for your list.
 * @member:     the name of the list_struct within the struct.
 */
#define list_for_each_entry_continue(pos, head, member)			
	for (pos = list_entry(pos->member.next, typeof(*pos), member),	
		     prefetch(pos->member.next);			
	     &pos->member != (head);					
	     pos = list_entry(pos->member.next, typeof(*pos), member),	
		     prefetch(pos->member.next))

//#endif /* __KERNEL__ || _LVM_H_INCLUDE */

#endif

下面是测试程序:



#include "stdio.h"
#include#include#include "list.h"

//自定义的数据结构
struct list_test_struct
{
	struct list_head	list;

	int key;
	int data;
};

void main()
{
	struct list_head list = {0};  //定义链表(头) 
	struct list_head *pos = NULL; 
	struct list_head *n = NULL; 

	int i=0;

	printf("定义链表n"); 

	printf("初始化链表!rn"); 
	INIT_LIST_HEAD(&list);  //初始化链表(头尾相接,形成空链表循环) 

	//判断链表是否为空 
	printf("判断链表是否为空:");  
	if(list_empty(&list)){ 
		printf("空rn"); 
	}else{ 
		printf("非空rn"); 
	} 

	//批量添加节点 
	printf("批量添加节点:rn");  
	for(i=0;ikey=key; 
		st->data=data; 
		list_add(&st->list, &list); 
	} 

	//显示列表所有节点 
	printf("显示列表所有节点:rn");   
	list_for_each(pos,&list)
	{ 
		struct list_test_struct *st=list_entry(pos,struct list_test_struct,list); 
		printf( "t node:key(%d),data(%d)rn",st->key,st->data); 
	} 

	//释放所有节点资源 
	printf("释放所有节点资源!rn"); 
	list_for_each_safe(pos,n,&list)
	{ 
		struct list_test_struct *st=list_entry(pos,struct list_test_struct,list); 
		list_del(pos);  //删除节点,删除节点必须在删除节点内存之前 
		free(st);   //释放节点内存 
	} 

}


对于复杂的宏定义,可以使用人工宏展开方式来查看:【Setting】 ->【C/C++】在底部的输入选项中,添加“/P”再次编译可以得到一个扩展名为i的文件,既是宏展开后的文件


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭