当前位置:首页 > 厂商动态 > 厂商动态
[导读]根据v1版本使用记录和市场评测进一步完善,以应用于更多的实际产品

2021年11月30日 – 日本东京 – 边缘AI领域的领先标杆企业LeapMind有限公司今日公布了其正在开发和授权的超低功耗AI推理加速器IP “Efficiera” v2版本(以下简称“v2”)。LeapMind于2021年9月发布了Efficiera v2的测试版,并收到了许多公司的测试及反馈,包括SoC供应商和终端用户产品设计师。Efficiera v2预计2021年12月开始发售。

LeapMind首席执行官Soichi Matsuda表示:“去年,我们正式推出了v1的商用版本,许多公司对Efficiera进行了评测。截至2021年9月底,我们共与8家日本国内公司签署了授权协议。‘向世界传播采用机器学习的新设备’是我们根据企业理念所设定的座右铭,而我们正通过提供v1来稳步推进这一理念的落地。在未来,我们将进一步通过技术创新和产品阵容扩展,继续努力实现人工智能的普及。”

Efficiera v2根据v1的使用记录和市场评测,扩大了应用范围,在保持最小配置的电路规模基础上,可覆盖更广泛的性能范围,并应用于更多的实际产品。产品由此得到了进一步的完善。

Efficiera v2概念

LeapMind董事兼首席技术官Hiroyuki Tokunaga博士表示:“自去年发布v1以来,我们强化了设计/验证方法和开发流程,旨在‘开发世界上最节能的DNN加速器’。我们一直在开发v2,以使产品能够适用于专用集成电路(ASIC)和专用标准产品(ASSP)。我们还在开发一个深度学习方面的推理学习模型,以便将超小量化技术的优势最大化。LeapMind的最大优势就在于我们可以提供一种技术来实现双管齐下。”

Efficiera v2的主要规格与特性

在保持最小电路规模的同时,覆盖更广泛的性能范围,从而扩大应用范围。

硬件特性

● 通过多路复用MAC阵列+多核,性能可扩展至48倍

V2允许你将卷积管道中的MAC阵列数量增加到v1的3倍(可选择x1、x4),并通过提供多达4个内核的选择,进一步扩大性能的可扩展性。

● 除卷积和量化外,还可实现硬件执行跳过连接和像素嵌入

1. 跳过连接是多层卷积神经网络(CNN)中常见的一种操作。(v1中由CPU执行)

2. 像素嵌入是一种对输入数据进行量化的方法

● 资源使用方面,配置与Efficiera 1相同

1. 有些应用只因AI功能可在规模有限的FPGA器件上实现就能创造价值。

2. LeapMind分析了一个实用型深度学习模型的执行时间,并仔细选择了额外的硬件功能。

集成到SoC中

● AMBA AXI接口

● AMBA AXI interface

AMBA AXI继续被用作与外部的接口,并且当接口被视为一个黑盒子时与以前一样,易于从当前设计中迁移。

● 单时钟域

FPGA中的目标频率

● FPGA的运行频率与先前相同,虽然取决于具体设备,但预计约为150到250MHz。

1. 256 GOP/s @ 125MHz (单核)

2. 高达12 TOP/s @ 250MHz (双核)

● 以加密RTL的形式提供

B. 通过改进设计/验证方法并审查开发流程,我们确保质量不仅适用于FPGA,也适用于ASIC/ASSP。

C. 开始提供一个模型开发环境(NDK),使用户能够为Efficiera开发深度学习模型。目前为止只有LeapMind实现了这项工作。

● 为Efficiera创建超小型量化深度学习模型所需的代码和信息包

● GPU深度学习模型的开发者可立即上手使用

● 支持PyTorch和TensorFlow 2的深度学习框架

● 学习环境为一个配备GPU的Linux服务器

● 推理环境为一个配备Efficiera的设备

● 来自LeapMind的技术支持

关于EfficieraEfficiera是专用于CNN推理处理的超低功耗AI推理加速器IP。其在FPGA或ASIC设备上以电路形式运行。“超小量化”技术将量化位的比特数最小化到1-2位,将占了大部分推理处理的卷积功率和面积效率最大化,而无需先进的半导体制造工艺或特殊的单元库。通过该产品,深度学习功能可被整合至各种边缘设备中,包括家用电器等消费类电子产品,和建筑机械、监控摄像头、广播设备等工业设备,以及受制于功率、成本和散热的小型机器和机器人,这以过去的技术水平是很难实现的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭