当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:探讨核电蒸汽发生器热工水力稳态特性,并对其结构和设计参数进行优化,同时验证不同功率水平下,污垢和堵管程度对蒸汽发生器运行状态的影响。结果显示,随着负荷的不断增加,蒸汽发生器双侧回路的传热系数逐渐变大,但其变化速率小于负荷的变化率,其中无堵管污垢情况下的总热传导系数高于有堵管污垢情况下的传导系数:同时,蒸汽发生器负荷率不断增加,入口、出口温度以及平均温度逐渐上升:负荷率>60%以后,出口温度的上升速率逐渐缩小,且平均温度的上升速率呈放缓态势:随着负荷率的增加,蒸汽发生器的循环倍率由20降到3.4。因此,为了满足蒸汽发生器的散热需要,使其处于额定状态,要对其运行参数进行调整,使其呈现动态的稳定状态,以保障运行安全。

引言

蒸汽发生器作为核电站重要的大型换热装置,其运行状态直接关系到核电厂的安全,所以全面分析其稳定运行机理具有十分重要的实践意义。蒸汽发生器位于一回路主冷却剂与二回路介质之间,对两者的热交换具有重要影响。因为介质、主冷却剂的流动状态会对蒸汽发生器的经济系统、稳定性产生重要影响,所以蒸汽发生器稳定性的研究,就是介质、主冷却剂水动力学的计算与分析。本文将在综合前人研究结果的基础上,结合实际案例和数学算法,从水动力学的角度对经济发生器稳定状态进行分析。

1相关参数的数学描述

1.1蒸汽发生器热平衡描述

(1)假设二回路产生蒸汽量为Q1,其计算公式如下:

式中:G1为二回路中介质的流量(t/h):Ii、Ij分别为介质的入口热恰和出口热恰(kJ/kg)。

(2)假设一回路吸收蒸汽量为02,其计算公式如下:

式中:G2为一回路中冷却剂的流量(t/h):Is、Iw分别为冷却剂的入口热恰和出口热恰(kJ/kg)。

(3)一、二回路热能平衡,其计算公式如下:

式中:μ为一、二回路中的热损失,核电站推荐值为0.01~0.03。

1.2蒸汽发生器热工描述

蒸汽发生器热工计算是通过二回路计算发生器的热传导面积,计算公式如下:

式中:Q为发生器产生的热量(J):K为热传导系数[J/(m2▪℃)]:ΔT为热传导的温度变化差(℃):A为发生器吸收热量的面积(m2)。

1.3蒸汽发生器水力描述

(1)一回路流动阻力计算。

假设介质阻力为ΔP,那么单相的介质流动公式为:

式中:APt为介质流动摩擦力(Pa):ΔPh为局部阻力(Pa)。

(2)双侧介质循环的计算。

双侧水循环的计算是求得循环回路的运动压头、流动阻力以及压头与阻力之间的关系和平衡系数,为水循环的降温速度、循环倍率(介质水的重量/蒸汽重量)提供依据,最后,对各个结果的合理性进行校对,使其处于合理范围。

一般来说,核电蒸汽发生器的工作压力为3.0~7.0MPa,所以蒸汽的重度差值(蒸汽重量流量/汽水混合物总重量)变化较大,以实现蒸汽的自我循环。二次侧蒸汽混合物的浴管高度上升后,会持续产生水蒸气,再次增加重度差。其中,介质循环平衡的计算公式如下:

式中:H、Hb、Hr为水、汽水、蒸汽的高度(m):r'为蒸汽的重度(N/~3):r~ix为汽水混合物的重度(N/~3):APd、APr和APs分别为上、下通道和汽水的阻力(Pa)。

由公式(6)可知,双侧介质循环处于平衡之后,介质的流动压力P~大于循环回路中的阻力,其计算公式如下:

由此可知,蒸汽发生器中的压力提高以后,水汽的重度差就会减小,致使运动压头的压力减小,保持介质双向循环的稳定。

2相关计算结果与静态特性的分析

2.1相关参数的设置

以A核电站Ⅱ期的40万kw蒸汽发生器为例,对其参数进行设置,计算不同功率条件下,新发生器的运行状态(无管道堵塞、无污垢等阻碍)、运行一段时间后(10%的堵塞和污垢)的运行状态,以及出口的蒸汽压力、双侧循环的倍率、双侧装水量等热工数值。

蒸汽发生器的规格如表1所示。

蒸汽发生器的额定参数如表2所示。

2.2热工水力稳态特性计算结果

依据上述蒸汽发生器实际结构参数、设计参数,对其进行热工水力特性计算,判断发生器静态特性的热工水力关系曲线。静态特性是核电站在不同负荷情况下,处于稳定状态时发生器、双侧传热的平均温度变化规律,如图1、图2、图3所示。

核电蒸汽发生器热工水力稳态特性分析

由图1可知,随着负荷的不断增加,蒸汽发生器双侧回路的传热系数逐渐变大,但其变化速率小于负荷的变化率。其中,无堵管污垢情况下的总热传导系数高于有堵管污垢情况下的传导系数。

由图2可知,蒸汽发生器负荷率不断增加,入口、出口温度以及平均温度逐渐上升。负荷率>60%以后,出口温度的上升速率逐渐减小,且平均温度的上升速率呈放缓态势。

由图3可知,随着负荷率的变化,蒸汽发生器的循环倍率由20降到3.4,而且蒸汽发生器的循环倍率变化幅度和波动比较平缓,说明其循环倍率并未随着蒸汽发生器的负荷增加,而呈现抖动性变化。在负荷增加的过程中,循环倍率呈现小幅度的上升和下降,其原因是蒸汽发生器含气率变化对流动压头产生了影响,即含气率会增加流动压头的阻力。

由图1、图2、图3可知,蒸汽发生器中循环导管的污垢会降低其换热系数,其原因是堵管会缩小蒸汽发生器的散热面积,降低介质的流动速度及其传导系数。因此,导管的污垢程度对蒸汽发生器换热系数、介质的热传导影响较大。

3结语

通过对A核电站1期40万kw蒸汽发生器结构参数、设计参数进行分析,可以得到以下几方面结论:

(1)热传导系数是蒸汽发生器散热的主要参数,其受管壁的热阻、厚度和污垢影响,蒸汽发生器传热性能与介质的流动速度、热传导接触面积密切相关。

(2)蒸汽发生器的总换热系数大于单侧换热系数,其散热总量与介质的流动速度密切相关。

(3)随着反应堆的负荷增加,双侧气压逐渐减小,管道污垢、堵管会对气压产生阻碍作用,影响热传导。在核电站运行过程中,污垢、堵管会减小蒸汽发生器双侧换热系数,进一步降低单侧出口的气压,影响介质的热传导。为了满足蒸汽发生器的散热需要,使其处于额定状态,要对其运行参数进行调整,使其呈现动态的稳定状态,以保障运行安全。

20220223_6215c3aca70e6__由图1可知

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭