当前位置:首页 > 电源 > 电源电路
[导读]虽然ADC看起来非常简单,但它们必须正确使用才能获得最优的性能。ADC具有与简单模拟放大器相同的性能限制,比如有限增益、偏置电压、共模输入电压限制和谐波失真等。ADC的采样特性需要我们更多地考虑时钟抖动和混叠。以下一些方法有助于工程师在设计中充分发挥ADC的全部性能。

我们是否曾经为我们的应用找到了模数转换器 (ADC),后来意识到我们需要更高的有效分辨率?如果我们的系统中有噪声,或者会给我们 ADC 输入信号添加噪声,那么我们可能会走运。对信号进行过采样可以增加 ADC 的有效位数 (ENOB) 分辨率,但这需要存在噪声。但是,在某些情况下,我们可以有意在信号中添加噪声以启用过采样。

虽然ADC看起来非常简单,但它们必须正确使用才能获得最优的性能。ADC具有与简单模拟放大器相同的性能限制,比如有限增益、偏置电压、共模输入电压限制和谐波失真等。ADC的采样特性需要我们更多地考虑时钟抖动和混叠。以下一些方法有助于工程师在设计中充分发挥ADC的全部性能。

要认真对待ADC的模拟输入信号,尽量使它保持干净,“无用输入”通常会导致“数字化的无用输出”。模拟信号路径应远离任何快速开关的数字信号线,以防止噪声从这些数字信号线耦合进模拟路径。

虽然简化框图给出的是单端模拟输入,但在高性能ADC上经常使用差分模拟输入。差分驱动ADC可以提供更强的共模噪声抑制性能,由于有更小的片上信号摆幅,因此一般也能获得更好的交流性能。差分驱动一般使用差分放大器或变压器实现。变压器可以提供比放大器更好的性能,因为有源放大器会带来影响总体性能的额外噪声源。但是,如果需要处理的信号含有直流成份,具有隔直流特性的变压器就不能用。在设计预驱动电路时必须考虑驱动放大器的噪声和线性性能。需要注意的是,因为高性能ADC通常有非常高的输入带宽,因此在ADC输入引脚处直接滤波可以减少混入基带的宽带噪声数量。


过采样意味着以高于奈奎斯特速率的采样,这是信号最大频率分量的两倍。通常在过采样之后进行平均或低通滤波器,然后进行抽取。过采样可以提高有效的 ADC 分辨率。对于所需的每一位额外分辨率,我们必须过采样四倍。见公式 1:

使用噪声提高 ADC 性能的秘诀

其中 b 是额外有效位数,FNyquist 是奈奎斯特频率。

关键是知道什么时候可以过采样。

一些 ADC 具有内置的硬件过采样模式,可以平均转换后的输出;请参见图 1,选项 A。在具有集成 ADC 的微控制器 (MCU) 上,我们还可以利用软件来实现过采样(有关更多详细信息和访问代码的链接,请参见应用说明用于更高分辨率的 MSP ADC 的通用过采样”示例项目)。在软件过采样中,MCU 执行后处理(包括后平均),或使用低通滤波器和抽取。低通滤波器需要更多的处理带宽(和功率),但会去除带外噪声以获得更好的性能。

使用噪声提高 ADC 性能的秘诀

1:过采样方法信号流程图

MSP432P401R MCU 为例:该微控制器包含一个集成的 1 MSPS 精密 ADC。要将 ADC 的 13.2 ENOB 分辨率提高到 20 kHz 信号的 14.2 位,必须至少以奈奎斯特速率 (40 kHz) 的四倍(即 160 kHz)对其进行采样。要从 13.2 位变为 15.2 位,必须以至少 4 2 = 16 倍奈奎斯特速率(即 640 kHz)对其进行采样(对于 sigma delta ADC,60 kHz 不一定与时钟速率相同)。

2 显示了具有过采样功能的 MSP432P401R MCU 的精密 ADC 的性能。请注意,当输入信号的频率为 20 kHz 时,性能在过采样率 (OSR) 为 32 时停止改进。这是因为 ADC 的最大采样频率为 1 Msps,并且由于转换器为 1 MSPS,因此信号的最大值可以将 OSR 设置为 32,以增加 ENOB 为 15.625 kHz(基于公式 1)。

使用噪声提高 ADC 性能的秘诀

2:具有不同过采样率的 MSP432P401R MCU ADC 性能

回到“关键是知道何时可以过采样”,这就是噪声是提高 ADC 有效分辨率的秘诀所在。以下是过采样有效提高分辨率的一些高级要求:

· 系统上的噪声应该足够大,以在连续的 ADC 转换中产生差异。该噪声可以是输入噪声或转换器内部的噪声(量化加热噪声)。

· 如果我们不使用抽取滤波器,则噪声应该是白色的。

· 带限的非平稳信号从过采样中受益更多。

如果信号没有足够的噪声,可以通过过采样添加带外噪声以获得更好的性能,然后过滤掉添加的噪声。

请记住有关过采样的以下几点:

· 转换器采样率必须大于最大信号频率的两倍。

· 过采样会增加功率,因此仅在必要时使用它——并且仅在必要的程度上使用。

· 过采样并不像拥有一个具有所需 ENOB 分辨率并直接输出结果的 ADC 那样简单。过采样需要在 ADC 结果之后进行额外处理。

· 我们将需要在软件中进行额外的后处理。预先验证的软件与MSP432™ MCU等高性能中央处理器 (CPU) 相结合,可帮助我们快速实施过采样 ADC 解决方案。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

工业自动化、医疗电子及精密测试领域,微弱信号的精准采集与处理是系统性能的核心挑战。以24位Σ-Δ ADC为核心的高精度数据转换系统,结合激光修调电阻阵列的微弱信号调节器,通过动态元件匹配(DEM)技术与激光微纳加工工艺的...

关键字: ADC 动态元件匹配

2025年7月8日,致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于微芯科技(Microchip)dsPIC33CK256MP506主控MCU的3.3KW双向图腾柱PFC逆变电源方案...

关键字: 电源 MCU ADC

纳祥科技在原来的基础上更新了一款高性能音频I2S 114DB ADC,它能够以高达192kHz的采样率,执行立体声模拟到数字转换,最高支持24位串行值,并具备114dB动态范围,-100dB THD+N,功能可覆盖CS5...

关键字: 纳祥科技 ADC 国产芯片

最新 DSC 器件配备专用外设,适用于数据中心电源及其他复杂实时系统

关键字: PWM 分辨率 ADC 数字信号控制器

在电子系统设计中,模数转换器(ADC)的前端输入配置是至关重要的环节,它直接关系到信号采集的精度、稳定性和可靠性。ADC前端输入配置的选择不仅需要考虑信号的特性、系统的需求,还需要兼顾成本、功耗以及实现的复杂度。

关键字: ADC 电源

便携式血糖仪作为糖尿病管理的核心工具,其信号链性能直接影响检测精度与用户体验。随着超小型ADC(模数转换器)技术的突破,通过优化信号链设计可显著提升血糖仪的灵敏度、功耗与集成度。本文以凌力尔特(Linear Techno...

关键字: ADC 便携式血糖仪

在工业自动化领域,工业信号调节器作为核心硬件设备,承担着信号采集、转换、传输与隔离的关键任务。其硬件设计需兼顾信号精度、抗干扰能力、实时性与安全性,尤其需重点优化信号调理电路、模数/数模转换(ADC/DAC)模块以及隔离...

关键字: ADC DAC 隔离模块

上海2025年3月27日 /美通社/ -- 迈威生物(688062.SH),一家全产业链布局的创新型生物制药公司,与英矽智能,一家由生成式人工智能驱动的生物医药科技公司宣布达成战略合作,基于双方各自在 ADC 研发和人工...

关键字: ADC AI 人工智能 智能驱动

在现代工业与信息化社会,电源系统的稳定性和可靠性对于各种设备的正常运行至关重要。为了实现对电源系统的有效管理和维护,设计一个具有远程监控功能的电源系统显得尤为重要。本文将详细介绍一个通过网络(如Ethernet或Wi-F...

关键字: 电源系统 远程监控 ADC

在现实生活中,我们面对的信号大多为连续信号。然而,数字信号处理技术已取得了显著进展,因此,我们常常需要将连续信号转换为数字信号,以便在计算机或FPGA等设备上进行数字处理。ADC与DAC恰好扮演了这一角色,它们是模拟连续...

关键字: ADC DAC
关闭