当前位置:首页 > 电源 > 电源-能源动力
[导读]我们是否想知道如何设计实时速度和位置控制应用程序?在这篇文章中,我们将逐步展示如何使用 TI C2000™ Piccolo™ F2806x InstaSPIN-MOTION™在台式测试设备(图 1)上实现最佳双轴速度和位置控制LaunchPad开发套件。

我们是否想知道如何设计实时速度和位置控制应用程序?在这篇文章中,我们将逐步展示如何使用 TI C2000™ Piccolo™ F2806x InstaSPIN-MOTION™在台式测试设备(图 1)上实现最佳双轴速度和位置控制LaunchPad开发套件。

1. 15"x15" 台式测试设备

不到 20 小时,测试设备就画出了正方形、三角形和圆形。


项目时间表

周一

2小时

收到CNC测试设备

周二

4个小时

将伺服电机连接到 X Y 平台

使用 InstaSPIN-MOTION 软件:

· 识别惯性

· 调整速度和位置环,

· 优化加速度和加加速度

周三

6个小时

创建方形运动配置文件

周四

6个小时

· 创建三角形运动配置文件

· 创建圆形运动配置文件

2. 台式测试设备创建运动曲线的时间表

1 步 - 将伺服电机连接到 X 和 Y 平台

如果我们正在开发多轴应用程序,则需要设计自己的电路板。我们使用两个 TI InstaSPIN-MOTION LaunchPad 开发套件迈出了第一步。LaunchPad 包括与两个 BoosterPack 接口的硬件,每个 BoosterPack 都可以控制一个电机,但这样做的软件框架仍在最终确定中,并将在未来版本的MotorWare ™ 软件中发布。


材料清单:

· 2 个 C2000 Piccolo F2806x InstaSPIN-MOTION LaunchPad 开发套件 ( LAUNCHXL-F28069M )

· 2 个 DRV8301 电机驱动 BoosterPack ( BOOSTXL-DRV8301 )

· 2 带编码器的低压伺服电机 ( LVSERVOMTR )

· MotorWare软件


我们使用 InstaSPIN-MOTION Position Plan Component 来创建和执行 X 轴和 Y 轴的状态转换。使用两个 LaunchPad 开发套件时,位置计划通过 GPIO 进行通信,这会引入少量延迟。当我们设计自己的电路板时,我们仍将运行两个 Plan 组件,但它们将通过变量而不是通过 GPIO 进行通信,这将产生更精确的开始。此外,我们将能够通过单个 TI C2000 Piccolo TMS320F28069M 微控制器控制两个轴,这可以节省大量成本。


2 步 - 确定每个轴的系统惯量

惯性包括刚性耦合到电机轴的任何东西。它包括任何直接随电机移动的东西。对于 CNC 测试设备X 轴与 Y 轴具有不同且独立的惯性。

我们使用 InstaSPIN-MOTION 速度识别组件来识别惯性。我们设置每个阶段,使其具有整个正向运动范围,因为惯性识别始终使电机沿正向旋转。然后我们使用了 InstaSPIN-MOTION MotorWare Lab 12a 软件,该软件识别了惯性和摩擦。惯性值是 InstaSPIN-MOTION 位置控制器的输入,它使用它来提供适当的扭矩以使应用程序移动。

这是 X 轴惯性识别过程的快速视频。它移动得很快,所以请仔细观察!


3 步 – 调整控制器

使用称为带宽的单一增益同时调整速度和位置。每个轴都是独立调整的。调整过程简单明了。使用 MotorWare Lab 13a 软件,我们调整了带宽,注入了干扰并评估了位置保持。重复此过程,直到系统受到干扰时轴在 0 速度下表现出良好的保持位置。我们将初始带宽设置为 10 rad/s,然后手动注入干扰。在此设置下,手臂很容易移动。随着我们增加带宽,移动轴变得更加困难。在 40 rad/s 时,测试设备工作台的 X 轴很好地保持了该位置。

这是调整过程的视频。


4 步 – 优化加速和加加速度

然后我们着手优化加速度和加加速度(加加速度是加速度的变化率)。梯形曲线用于优化加速度,因为该曲线忽略了加加速度。当加速度缓慢增加时,每个轴都被命令来回移动。最佳加速发生在电机未能达到指令值之前。

一旦我们找到最佳加速度,我们就使用具有连续加加速度的 st 曲线优化加加速度。调整了加加速度,使测试设备能够以非常高的可靠性平稳启动和停止。


5 步 – 创建方形运动曲线

让测试设备画一个正方形很容易——一次只移动一个轴。为每个轴创建了一个位置计划。在我们的配置中,X 轴是主轴。X 轴平面图发出 Y 轴开始移动的信号。Y 轴计划在其移动完成时发出 X 信号。

 

X轴位置计划:

1. 信号 GO Y

2. 过渡状态

3. 等待 Y 完成

4. 信号 GO Y

 

Y轴位置图:

1. 等待来自 X GO

2. 过渡状态

3.  X 发出信号 DONE

4. 等待来自 X GO

 

3. 创建方形运动曲线


6 步 – 创建三角运动曲线

画一个三角形更难。必须协调 X 轴和 Y 轴才能绘制倾斜的侧面。需要进行一些计算来生成每个轴的运动计划,使用以下公式:

Vel = d位置步长/t


Vel = 速度

d = 距离

t = 时间


每个轴都需要同时完成移动,因此:

t x =t y


行进距离 (d position_step ) 是已知的。通过固定 X 轴的速度,这给了我们一个已知的时间 (t x ),并且我们能够从那里计算 Y 轴的速度 (Vel y )。

4. 创建三角运动曲线


7 步 – 创建圆周运动曲线

圆周运动轮廓是三种形状中最复杂的。我们在这个上作弊了一点。实际形状是一个 32 边的多边形。它近似于一个圆,但计算量较小。我们使用 Matlab 来计算 X 和 Y 轴的位置。从那里开始,我们使用与三角形运动曲线相同的程序来确保每个 X 和 Y 运动同时结束。

 

5. 创建圆周运动曲线

观看已完成项目的视频。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着电力电子技术的不断发展和进步,三相变频电源作为一种能够输出可调频率和电压的三相交流电源,在电机驱动、照明设备、通讯设备、电磁炉、电焊机、医疗设备等领域得到了广泛的应用。然而,三相变频电源在长时间运行过程中,由于各种因...

关键字: 三相变频电源 电机驱动

在现代电力电子领域,半桥模块作为一种关键的功率转换组件,发挥着不可或缺的作用。其结构简单、易于控制、可靠性高等特点,使其在电机驱动、电源转换、电网治理等多个领域都有广泛的应用。本文将详细探讨半桥模块的工作原理、特点、应用...

关键字: 半桥模块 功率转换组件 电机驱动

IAR Embedded Workbench for Arm已全面支持小华半导体系列芯片,加速高端工控MCU和车用MCU应用的安全开发

关键字: MCU 编码器 电机驱动

电子换向器,作为一种关键的电力控制设备,广泛应用于各类电机驱动系统中。其核心功能是实现电流或电压的方向转换,从而实现对电机速度和方向的精确控制。那么,电子换向器究竟由哪些部分组成?这些部分又是如何协同工作的呢?本文将对此...

关键字: 电子换向器 电力控制设备 电机驱动

EPC推出采用紧凑型QFN封装(3 mm x 5 mm)的100 V、1 mOhm GaN FET(EPC2361),助力DC/DC转换、快充、电机驱动和太阳能 MPPT等应用实现更高的功率密度。

关键字: 导通电阻 DC/DC转换 电机驱动

无刷直流电机是在有刷直流电动机的基础上发展来的,具有无极调速、调速范围广、过载能力强、线性度好、寿命长、体积小、重量轻、出力大等优点,解决了有刷电机存在的一系列问题,广泛应用于工业设备、仪器仪表、家用电器、机器人、医疗设...

关键字: 电机驱动 无刷直流电机 机器人

步进电机是一种将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成...

关键字: 步进电机 电机驱动

4.5A STSPIN948和5.0A STSPIN958的功率级配置灵活多变,驱动模式可调,动态响应快

关键字: 电机驱动 直流有刷电机 双极步进电机

随着汽车电气化和智能化的逐步深入,一辆车上的电机数量越来越多,应用也愈发丰富。除了负责汽车驱动的电机外,还有非常多的智能应用依赖于电机的动作执行。传统应用的包括车窗升降、座椅调节、空调等,新兴应用包括车灯随动、HUD、激...

关键字: MPS MCU 电机驱动 汽车电机

近日,工业控制及智能家电领域的全国产RISC-V MCU领军企业爱普特微电子正式发布了一款功能强大、高算力、高处理速度,可支持双电机驱动的全国产RISC-V 32位MCU—APT32F173系列。

关键字: RISC-V MCU 电机驱动
关闭