当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:针对化工企业流量仪表选型困难的问题,介绍了旋进流量计与转子流量计的工作原理,并将这两种流量计进行了特性对比,得出了在中小管径中含颗粒物的化工介质、密度发生变化的介质工况下,旋进流量计比转子流量计更有优势的结论。

引言

在化工企业中,流量仪表在生产过程控制、能源计量等活动中是非常重要的测量设备,它的选型和配置是否合理将直接影响化工运行效率和产品质量。因此,针对不同的测量目的、实际工况、介质参数等,仪表的配置选型非常重要。

由于仪表种类繁多,仪表选型要依据测量介质、仪表工作特性进行综合考虑,结合现场经验设计最有效的解决方案。通常情况下,选用没有运动部件的流量仪表,这种仪表在现场使用中更稳定、更可靠。结合笔者多年的现场使用情况得出以下结论:在中小管径中,含颗粒物的化工介质、密度发生变化的介质在流量仪表的使用效果上,旋进流量计比转子流量计更有优势。

1测量原理

1.1旋进流量计(旋进旋涡流量计)

旋进流量计(图1)原理上属于流体振动速度型流量计,它是在流量计内部植入一个起旋器,当流体通过起旋器后迫使流体沿轴旋转并形成漩涡流,旋转的中心形成涡核,涡核在回流作用下形成二次螺旋形旋转。这种二次旋转的频率与流量呈正比,流量计形状设计合理时,在很宽的流量范围内,频率与流量呈线性关系,通过测量得到旋转流体频率就可以求得流体的体积流量。

式中,0v为体积流量(m3/s):f为旋涡频率(Hz):K为流量计仪表系数(脉冲数/m3)。

旋转频率由信号检测体(压电)测得,通过信号处理器被转换成4~20mA的标b电流准出信号,输可以不经转换直接准出脉冲频率信号。旋进流量计原理如图2所示。

图2旋进流量计原理图

1.2转子流量计

转子流量计(图3)的工作原理:通过改变流体的流通面积,保持转子上下的差压恒定,故又称为变流通面积恒差压流量计,也称为浮子流量计。测量部分流向自下而上为倒锥管,浮子随流量大小悬停在任何位置,浮力+差压力=重力。流量增大时,浮子上移则流通面积增大,通过改变流通面积实现恒差压。

2两种流量计特性比对

旋进流量计和转子流量计的特性对比如表1所示。

通过表1的对比分析,根据仪表优缺点可知,在流量较小时,这两种流量计从原理上说都可以选择,但在实际运用中有差异。

转子流量计的小流量测量必须选择轻质材料(塑料等)的浮子,而且浮子通过上下运动工作,会造成以下几个主要缺陷:

(1)不能耐受介质冲击,如果流量波动大(例如阀门快速开启),浮子太轻会被吹翻或卡在轨道上,造成损坏无法工作:(2)带有一些颗粒物(有一定黏性)的介质,会附着在浮子上,造成计量误差或无法工作,严重时浮子被卡住形成断流,带来严重的安全隐患。(3)转子流量计的浮子是根据被测介质的密度设计,当被测介质的密度与设计密度发生变化时,必须及时修正。如果测量介质的密度发生了变化或者测量变组分的介质,转子流量计都不能b确计量甚至得到的是无效的计量数值。(4)通常情况下,转子流量计必须垂直安装,限制了现场管道的位置。

而旋进流量计鉴于它的原理和特性,正好可以规避上述问题,同时具有和转子流量计相同的优点,完全可以取代转子流量计,且使用寿命更长、计量精度更准确。

3现场应用案例分析

3.1某厂纺丝装置的现场应用案例

鉴于旋进流量计在测量小流量方面的突出优势,某厂在2016年的老区纺丝车间试用了3台旋进流量计,具体情况如下:

之前用转子流量计测量中和浴液(含H2sO4/Na2sO4),DN25口径测量范围为1~5m3/h,由于压缩机工作时压力不稳定,经常会造成转子流量计的浮子在冲压下被打翻,造成卡壳,无法计量介质。经研究发现,由于该位置的流量很低,一般流量计的下限无法满足测量需求,但是旋进流量计的下限更低,DN20口径的测量范围为0.4~6m3/h,优于转子流量计的测量范围(2~16m3/h)。经过多方商讨,将转子流量计改为旋进流量计。经过一年的使用观察,现场实际使用效果良好,解决了一个工艺难题。

随后,该厂陆续在新区甲醇、醋酸乙烯装置、纺丝、PVA等车间装置进行了旋进流量计替换转子流量计的改造工作,总数超过40套,且运行效果明显。

3.2蒸汽管线分支,小管径、低流速的测量应用

该流量计应用位置处于蒸汽管线分支,DN20管径,蒸汽温度180℃,常用流量25kg/h,原先工厂选用的是金属转子流量计,在垂直管道上安装,由于管线较长、保温层老化等原因,管道中存在少量凝结水,随着蒸汽高速流动,对转子造成冲击进而损坏仪表。选用其他流量计又无法解决小流量准确测量问题,最终选用安装了旋进流量计解决了该问题。

某石化装置选用旋进流量计解决了直管段不足等流场问题,如图4所示。

4结语

综上所述,在中小管径中含颗粒物的化工介质及密度发生变化的介质,在流量仪表的使用效果上,旋进流量计比转子流量计更有优势。我们更应注意在流量仪表的实际选型工作中,要了解仪表的原理和特性,关注测量介质的状态参数,并积极和有经验的仪表制造厂商进行技术联络,以便做出最优的仪表选择。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭