当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:根据六足昆虫的运动形态,利用so1idworks进行了沉浸式仿生机器人的机械结构设计,并利用3D打印技术进行了实物制作。基于双目摄像头、VR成像技术等,利用安卓平台和树莓派控制机器人及机器手臂的运动,制作了一款沉浸式仿生机器人,并对该样机进行了试验,结果表明,该机器人具有良好的可操作性,市场前景广阔。

引言

近年来机器人技术得到飞速发展。人们希望未来移动机器人不仅可以在已知的结构化环境中迅速、准确地完成任务,还可以在未知的、非结构化的环境中完成人们提出的任务[l],这就要求移动机器人具有良好的操控性和地面通过能力。

本设计采用了运动灵活、环境适应能力较强的六足仿生机器人为运动载体,利用VR眼镜全景观察工作环境,通过遥控手柄实现远程操作。该机器人适用于工作环境狭小、危险、不便于人员出入的场所。工作人员能够操作该机器人,在保证人身安全的前提下,可以更有效、更安全地完成救援、检测等任务。

1沉浸式仿生机器人总体设计

沉浸式仿生机器人主要由VR视频成像设备、六足仿生机器人和无线遥控器组成。操作者通过佩戴VR眼镜,利用无线遥控器对六足机器人进行控制,总体设计框图如图1所示。

2基于Solidworks的仿生机器人结构设计及实体制作

so1idworks是一款三维设计软件,具有零件建模、装配、绘制工程图、模拟仿真等功能。利用so1idworks建立六足机器人身体上部、下部、关节、足、摄像头支架、控制板支架等零件模型:利用装配功能,将建立好的零件模型组装成六足机器人:利用模拟仿真功能,制作六足机器人仿真动画。双击桌面上的图标,在弹出的"新建so1idworks"文件对话框中选择按钮,单击“确定"按钮,进入so1idworks零件造型界面。通过“草图"“拉伸凸台/基体"“拉伸切除"“圆角"等命令,完成六足机器人的各零件绘制。主要零件建模如图2所示。

新建六足机器人装配体,单击按钮,单击“确定"按钮。在主界面“开始装配体"下方选择“浏览"。首先插入身体,接下来在装配工具栏上单击按钮,利用几何关系(同轴度、重合、平行、垂直、相切等)依次插入身体2、腰关节3、上肢4、下肢5、电池盖板6、摄像头支架7、控制板支架8等零件,并对各零部件进行装配。六足机器人的装配体和爆炸视图分别如图3、图4所示。

将so1idworks绘制的各零件另存为“*.st1"文件,输入3D打印机制作零件实体,并将各零件与舵机、双目摄像头、Arduino控制板、树莓派等组装成六足仿生机器人,实体如图5所示。

3仿生步态设计

该机器人每条腿都由3个舵机控制。l号舵机将机器人身体与图2(c)所示的腰关节连接起来,用于控制机器人运动时的摆腿动作:2号舵机将腰关节与图2(d)所示的上肢连接起来,类似于髋关节,用于控制机器人上肢抬起及放下动作:3号舵机用来连接上下肢,类似于膝关节,用于控制机器人下肢运动,模仿昆虫运动时的踢腿动作。

舵机编号如图6所示。

工作时,机器人模仿六足昆虫的三角步态运动,足1、足4、足5为一组同时运动:足2、足3、足6为一组同时运动,六足编号如图7所示。

在运动中,无论何时机器人都至少有3条腿支撑身体,具有良好的稳定性。

4沉浸式体验设计

4.1双目摄像头成像原理

双目立体视觉是利用双目相机从不同角度获取被测物体的两幅图像,并利用视差原理计算图像对应点间的位置偏差,建立被测物体三维几何信息的方法,如图8所示。本设计是基于开源的openCV视觉函数库,利用双目摄像头同步采集图像,经过图像预处理、3D重投等,形成三维视觉效果[3]。4.2实时VR成像实现方法

在安卓平台上安装JuicessH软件,在树莓派终端输入sudoifconfig查看IP地址,在JuicessH中点击connections,并输入树莓派IP地址远程控制树莓派。连接成功后将在平台上显示树莓派终端,通过此终端输入sudoraspi-config进入配置界面,开启VNC服务并在树莓派终端中输入sudoapt-getinstallguvcview安装录像软件,输入sudoguvcview开启软件进行配置,如图9所示。配置完成后,会出现摄像头显像画面,如图10所示。

双目摄像头采集实时环境图像并对画面实施立体化处理,处理后的图像通过树莓派将数据传输到安卓平台,用户使用VR眼镜看到的操作环境是多源信息融合、交互式3D动态视图和物理行为的系统模拟,使用户具有身临其境的沉浸式体验。

5结语

本文设计的仿生机器人模拟了六足昆虫的运动形态,将虚拟现实技术与机械臂相结合,具有优越的道路通过能力、良好的操纵体验和多样化功能。

嵌入式开发板可用于实时处理双目摄像头采集的图像信息,并通过wi-Fi无线传输到手机:通过使用手机VR盒子,为使用者提供良好的虚拟现实体验,让用户完全沉浸在环境中操作机器人,通过虚拟现实技术,用户可以更好地掌握环境变化情况:机械臂作为操作者身体的延伸,可以代替操作者完成某些危险工作。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭