当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:以某电厂青岛捷能30MW背压式汽轮机组为例,其原调速系统使用DDV阀、伺服放大器、错油门、油动机等结构形式,现采用REXA执行器代替DDV伺服装置作为系统调节动力源,通过杠杆驱动油动机、错油门,改造后的汽轮机调速系统具有良好的静态和动态性能。

引言

某电厂有1台青岛捷能30MW背压机组,汽轮机机组形式是高压单缸、冲动式、非调整抽汽背压式。调速系统采用的是数字式电气液压调节系统(DEH),控制系统采用的是和利时MACs系统,液压部分是DDV阀、oPC电磁阀、错油门、油动机结构形式。供油系统包括主油泵及注油器等,主油泵出口的高压油(2.0MPa)除供给调节保安系统中各元件的经常用油外,大部分供给注油器。此外,主油泵还供给油动机快速动作时所需的耗油。机组正常运行时DDV伺服装置有卡涩现象,为保证机组安全稳定运行,对该机组的调速系统进行了改造。

DEH系统的核心单元是电液转换器,它和汽轮机调速系统的电液转换器都必须提供辅助控制油站,对油的品质要求特别苛刻,并且油源易受周围环境污染,调节系统时常出现堵塞、卡涩问题,严重影响汽轮机的稳定运行。所以,为提高电液转换器的抗干扰特性,简化原装置构造,进一步提高DEH系统运行的稳定性,根据现场30MW背压机组的特点,采用REXA执行器进行改造,通过杠杆驱动油动机、错油门。

1REXA液压调节系统

1.1REXA执行器构成及工作原理

1.1.1REXA执行器构成

REXA执行器可分为两个单元,由控制模块与动力模块两部分组成。REXA液压控制装置是液压输出力的转换装置,可将仪表4~20mA信号转换为机械力输出,是机组调速系统改造的核心部件。

控制模块主要完成执行器输出位移、速度、加速度、死区等参数的设定、调整和控制:对执行器的运行状态进行自动监测、诊断、报警和防护。动力模块是执行器的核心,由马达、齿轮泵、流量匹配阀、贮油箱、加热器、油缸、位移传感器等组成,采用高度集成化、模块化、小型化的设计,所有组件内部集成,一体化结构,无外部油管路,如图1所示。

图1REXA执行器

1.1.2REXA执行器工作原理

智能可控电机接受控制单元的功能指令,控制动力单元,以线性位移大力矩输出驱动被控对象,同时通过自身位移反馈,完成整个调节过程,实现各种功能控制,如图2所示。

1.2力驱动执行机构

将油动机反馈滑阀拆除,堵死原错油门套筒上的动反馈油口,在错油门滑阀最下面的台阶上开一个3mm的孔。新增REXA执行器,使用机械杠杆连接,机械杠杆一侧与机组油动机连接,另一侧与机组前箱错油门连接。REXA执行器接受DEH系统控制信号,将其转换为大力矩输出的位移信号,控制油动机滑阀,通过机械杠杆反馈完成调节过程。

1.3调节系统原理

(1)基于传统的液压执行机构仍具有良好的性能,集成型电液执行器电液调节系统,是在保留机组的执行机构、油系统及保安系统的前提下进行改造的,升级后的调节系统如图3所示。去除油动机反馈滑阀,将REXA执行器采用机械杠杆固定在错油门上部,DEH控制信号经REXA执行器转换为力矩输出的位移信号,控制错油门滑阀,通过杠杆反馈完成调节过程,通过DEH系统实现机组挂闸和主汽门启闭。

(2)加负荷过程:REXA执行器接受DEH控制信号向上动作,杠杆以油动机活塞杆为支点控制错油门滑阀上的顶杆向上动作,错油门滑阀在1600N的作用下迅速向上动作偏离中间位置,使压力油进入油动机活塞下部,机组油动机活塞在压力油的影响下向上方移动,因此调节汽阀被开大。油动机活塞向上运行时,以REXA执行器为支点,通过杠杆控制油动机错油门滑阀回到中间位置,从而完成加负荷过程。减负荷过程与加负荷过程相反。

(3)0PC超速限制:0PC电磁阀正常不带电关闭,封闭0PC泄油通道:通电时打开,泄0PC油,关闭调节汽阀,两只0PC电磁阀并联布置,任何一只打开就能泄掉0PC油,提高了安全性。当机组甩负荷或者超速103%时,将0PC双联电磁阀打开,迅速关闭调节汽门,以避免机组超速飞车事故的发生。

2应用结果

2017年9月对该电厂30MW汽轮机的电液调节系统改造成功,图4是其机组启动曲线,图5是其机组自动控制下的负荷响应曲线。

REXA执行器与原液压调节系统的性能分析比较,如表1所示。

3结语

某电厂青岛捷能30MW背压汽轮机,于2017年9月机组大修期间,采用透平油无控制工质REXA电液执行器作为驱动装置,对该机组液压调速系统进行了升级改造。于2017年10月20日一次启机成功,机组在空负荷及甩负荷试验中均表现出良好的动态及静态特性。截至目前,REXA调速系统无故障发生,获得了令人欣喜的改造成果,具有较大的推广价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭