当前位置:首页 > 电源 > 电源-能源动力
[导读]Ansys 是一家专门从事结构、流体动力学、电磁和多物理工程仿真的公司,最近与 Electro Magnetic Applications, Inc. (EMA) 合作推出了其 EMA3D Charge 软件。EMA3D Charge 是一款模拟软件,可改进从太空探索到汽车和消费电子产品等应用的设计和安全性。

Ansys 是一家专门从事结构、流体动力学、电磁和多物理工程仿真的公司,最近与 Electro Magnetic Applications, Inc. (EMA) 合作推出了其 EMA3D Charge 软件。EMA3D Charge 是一款模拟软件,可改进从太空探索到汽车和消费电子产品等应用的设计和安全性。

在大多数电子应用中,尤其是在航空航天和汽车设计中,必须减轻与充电和放电事件相关的安全风险。在太空任务中,工程师必须确保航天器不会受到辐射和宇宙射线的负面影响。同时,任何类型的车辆都必须保持其对安全至关重要的功能,即使在遇到意外的充电或放电事件时也是如此。

静电放电 (ESD)可能导致异常甚至系统故障,它是由超过材料强度的电场引起的,然后迫使高电流通过材料和潜在的系统组件。在太空中,这些高电场是由等离子体环境引起的充电引起的。在陆地上,它可能是由高压差或静电荷积聚引起的。减轻 ESD 的有害影响在所有电子设计中都是必不可少的,这使得支持 ESD 分析的工具在为这些恶劣环境设计和制造车辆时必不可少。

ANSYS EMA3D 充电

Ansys 的新软件工具满足了工程师评估可能导致灾难性产品故障的充电和放电事件的需求。仿真软件允许在设计周期中进行早期风险分析,从而提高预测准确性并缩短上市时间和成本。

“我们开发 EMA3D Charge 是因为我们看到这种软件解决方案在行业中存在差距。尽管它一直专注于航天器行业,但事实证明,我们用于充电和放电的许多物理和解决方案也适用于比我们最初想象的更广泛的行业”,Kevin-Druis Merenda 说, EMA 的科学家。

据 Merenda 称,Ansys 仍在探索该工具可以应用的可能领域的深度。这不仅包括航天器、航空航天和国防应用,还包括汽车、消费电子产品,以及更普遍的任何可能存在 ESD 风险的领域。

该工具本身旨在通过观察材料在等离子体环境或高压环境中的充电方式来分析和评估静电放电的风险。风险评估非常重要,因为它有助于预测 ESD 事件是否真的发生在航天器表面、电介质内部,甚至当消费者在地毯上行走然后触摸他们的计算机时产生电荷时会发生什么。

从性能的角度来看,EMA3D Charge 非常高效,因为它利用多核架构来缩短仿真时间。在单核硬件平台上通常需要一周才能运行的模拟现在可以在一两天内完全执行。

太空工程师必须解决的两个典型问题与太空中暴露的电介质或卫星上的表面充电有关。

EMA3D Charge 通过利用四个物理(时域)求解器提供全面而准确的分析,帮助设计人员评估和管理与材料装卸相关的风险。更准确地说,该工具提供以下主要功能:

· 预测由于放电事件导致的灾难性卫星故障,必须在项目设计阶段解决这一问题,因为在轨测试几乎是不可能的

· 预测卫星和太空平台上的电荷积累,这是一项艰巨的任务,需要彻底了解等离子体和材料物理学

· 由于难以预测不良电磁干扰 (EMI) 效应和材料退化,它执行准确的充电分析以检测电弧何时、何地以及如何形成

该软件还管理空气和固体电介质中静电放电的影响,传统上这需要大量具有高学习曲线的复杂模拟工具。可以使用 EMA3D Charge 分析的充电和放电现象如下:

· 空气击穿:在高压系统中,它利用有限元时间差法和非线性空气化学模块来模拟各种空气密度和湿度下的电弧放电

· 表面充电:在低能和高能等离子体环境中,以及通过摩擦起电,可以使用高度优化的电荷平衡方程求解器

· 固体材料的内部充电:从高能粒子通量,它利用 3D 粒子传输源和全波电磁有限元法 (FEM) 的耦合

· 耦合充电模拟:它利用电荷平衡方程求解器、FEM 和 3D 粒子传输工具来自洽地求解由表面充电问题产生的 3D 电场

· 固体介电材料中的介电击穿:一旦局部场超过给定材料的介电强度,就会使用 FEM 与 3D 粒子源和随机树模型的耦合进行模拟。

该工具的最新版本 (2022 R1) 旨在解决更多技术问题,包括 PCB、3D IC 封装、EMI/EMC、热、布线和机电设计,在 5G、自动驾驶汽车和电气化仿真方面取得了重大进展。

“今天,我们在材料和太阳能电池板设计方面取得了许多进步。能够使用更高功率的太阳能电池板和创新材料,并快速有效地模拟那些用于 GEO 环境和其他任务的材料,是我们已经完成的一项重大任务,”EMA 高级科学家 Gregory Wilson 说。

除了在太空中执行 ESD 测试外,最重要的事情之一是辐射硬化。许多电子元件需要进行抗辐射处理,以确保它们能够经受住任何位翻转。

“这些是我们可以用我们的工具解决的问题,特别是屏蔽效应和那种可靠性。我们还准备在我们的实验室中测量特定的材料特性,这些特性将用作工具的输入”,Wilson 说。

这就是为什么 Ansys 建立了一个测试实验室设施,允许他们运行与为验证它们而设置的模拟相同的测试。来自仿真的数据也可以耦合到 Ansys 环境中的其他工具,例如 EMA3D Cable。

“EMA3D 电缆允许我们将发生在电缆上的瞬变耦合,以了解下线电路将如何受到影响。为此,我们从仿真中导出一个 S 参数文件,使我们能够直接将这些影响应用到 spice 模型中,然后可以将其用于电路设计和分析”,Wilson 说。

正如威尔逊解释的那样,每当他们有客户来他们的实验室进行测试时,他们都会免费向客户提供该测试的候选模拟。通过这种方式,他们可以展示测试和仿真的互补性,并展示工具的验证,这将使他们能够执行更多的仿真,并改变他们可能拥有的设计迭代,而无需测试每一个设计改变。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭