当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:为控制和降低干热灭菌隧道在生产运行过程中的风险,以BosCHHQo33L4型干热灭菌隧道为例,介绍了干热灭菌隧道的系统结构与工作原理,对干热灭菌隧道的关键结构及部件进行了评估,应用失败模式效果分析工具对关键组件进行了风险分析,从设备运行维护角度出发,提出和总结了设备风险控制的方法与经验。

引言

制药企业的药品分装系统一般由超声波小瓶清洗机、干热灭菌隧道、灌装压塞机组成联动生产线。干热灭菌隧道主要用于小瓶微生物的灭菌与除热原工作,相对于该系统其他设备,干热灭菌隧道是唯一在正常生产过程中不用人为控制和干预的设备,其功能全靠自动化控制实现。因此,熟悉干热灭菌隧道的内部结构与工作原理,从运行与维护的角度对设备进行风险分析与控制,对于保证产品质量具有非常重要的意义。

BosCHHQo33L0型干热灭菌隧道作为制药分装系统中的灭菌设备,是目前市场上最为常见的机型之一,国内许多制药设备生产商也借鉴了它的设计原理与构造,在同类设备中具有一定的代表性。

1干热灭菌隧道系统组成与工作原理

1.1工作流程与原理

BosCHHQo33L0型干热灭菌隧道在正常工作模式下,瓶子经过洗瓶机清洁后进入隧道进瓶端1,累积到一定数量后,触发累积最小量传感器,网带运行,在层流条件下,进入预热区域2,热风烘干小瓶中残留的水分后进入加热区域3。经过高温灭菌和去热原处理,至冷却区域L和冷却区域5冷却后,在隧道出料口6传输至下游设备(灌装机)。抽湿风机7将瓶子挥发的水分引至总排风机8排出或循环,排风机保持隧道内外呈微正压环境,保证隧道上下游压差与洁净度。其工作原理如图1所示。

图1工作原理

1.2主要功能部件及技术参数

1.2.1小瓶输送系统

小瓶输送系统配有正常生产与清空两种生产模式。其主要由输瓶网带、网带电机、进瓶传感器、传动轴等部件组成。网带进瓶端与出瓶端采用延长设计方式,以防止倒瓶后掏瓶现象的发生。

1.2.2洁净层流系统

洁净层流系统分为进瓶预热层流系统、高温灭菌层流系统与冷却层流系统。

进瓶预热层流系统用以烘干隧道进瓶口小瓶内部的水分,以降低或消除灭菌段热量辐射损耗。其工作温度一般要求在60~90℃,风速要求控制在0.59m/s左右,其热量来源于加热段的扩散。其主要由风机、高效过滤器、压差表、风速监测装置组成。

高温灭菌层流系统是灭菌隧道的核心区域,用于小瓶的灭菌与除热原工作。可设定温度范围为20~350℃,工作温度一般在250~350℃,风速要求控制在0.65m/s左右。其主要由循环风机、高效过滤器、加热管、温度传感器、均流板、压差表、风速监测装置组成。

冷却层流系统将高温灭菌段输送过来的瓶子冷却至10~15℃左右,以保证灌装在瓶子里的制品性状不发生改变。该区域风速低于高温灭菌段,一般控制在0.60m/s。其主要由循环风机、高效过滤器、温度传感器、压差表、换热器、调节阀等部件组成。

1.2.3加热系统

加热系统为高温灭菌层流系统提供热量。其主要由加热管、控制器、固态继电器、交流接触器、风机、温度传感器等部件组成。

1.2.4压差平衡系统

为保证隧道内部的洁净要求,要求隧道与周围环境保持一个微正压,一般控制在2~LPa。压差平衡系统依靠压力传感器检测隧道内部与房间的压差,对比设定的压差期望值,通过调整隧道下排风机的转速来实现和平衡隧道内部与房间的压差。其主要由压差变送器、PID控制器,变频器、排风机等部件构成。

1.2.5控制系统

控制系统一般指电气控制系统和控制软件部分,包括控制程序、检测元件、控制元件、执行元件等。干热灭菌隧道控制系统主要由控制程序、工控机、PoC控制器、传感器、变频器、断路器、继电器等其他电子元器件构成。

2部件关键性评估与风险分析

根据部件的功能、用途、位置以及对产品的影响来评估其GMP关键程度,部件的GMP影响评估以产品的5个质量参数为基础(功效、特性、安全、纯度、质量)。

2.1关键部件评估方法和标准

以"是"或"否"回答以下7个问题:(1)部件是否用于证明符合所注册工艺的规定?(2)部件是否用于控制/检测一个关键工艺参数?(3)部件的正常操作或控制对产品质量或功效是否具有直接影响?(4)从部件获取的信息被记录为批记录、批放行数据或其他GMp相关文件的一部分?(5)部件是否与产品、产品成分、产品内包材直接接触?(6)部件是否用于获得、维护、检测或控制可以影响产品质量的关键工艺参数,而对控制系统无独立的验证?(7)部件用于创建或保持某种系统的关键状态?以上7个问题只要有1个回答为"是",就将该部件判定为关键部件。

根据以上判定条件,干热灭菌隧道包括以下关键部件:工控机、控制程序、pLC控制器、记录仪、变频器、输瓶网带、加热管、送风风机、高效过滤器、温度传感器、压差表、风速监测装置、压力变送器、换热器、排风机。

2.2风险识别分析方法

失败模式效果分析(FMEA)是一种对工艺或系统部件的失败模式及其对结果和/或产品性能可能产生的潜在影响的评估。应用失败模式效果分析工具,根据经验和维修历史数据对系统部件出现问题的可能性、被及时发现(可检测性)以及造成的后果进行评分,如表1所示。

对已经识别的风险进行评价,确认风险等,风险等级=可能性x严重性×可检测性。表2为风险等级与风险接受标准对照表。

2.3对选出的关键组件进行风险分析与控制

通过2.1的方法,我们找出了干热灭菌隧道的关键组件,按照表1、表2的赋分原则及方法对这些组件进行风险评估分析,提出了相应的风险控制方法与措施,如表3所示。

3结语

本文主要从设备运行对产品质量的影响角度考虑,结合设备自身故障发生的风险,通过对我司5台干热灭菌设备的解剖分析,确定了干热灭菌隧道的关键组件,对关键组件进行了风险评估,制定了相应的风险控制方法和设备预防性维护计划,大大降低了设备在生产过程中发生故障风险的可能性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭