当前位置:首页 > 电源 > 电源-能源动力
[导读]近几十年来,锂离子电池技术的进步改善了全球的生活条件。锂离子电池(Lithium ion batteries,简称LIB)用于大多数移动电子设备以及电动车辆。然而,人们越来越担心可再生能源和智能电网的负载均衡,以及锂源的可持续性,因为锂资源的地球储量相对有限,这必将导致锂资源紧张和原材料价格飙涨。因此,单靠LIB能否满足小型和/或中大型储能应用不断增长的需求仍不清楚。为了缓解这些问题,最近的研究集中于替代能源储存系统。钠离子电池(Sodium ion batteries,简称SIB)被认为是最佳候选电源。

近几十年来,锂离子电池技术的进步改善了全球的生活条件。锂离子电池(Lithium ion batteries,简称LIB)用于大多数移动电子设备以及电动车辆。然而,人们越来越担心可再生能源和智能电网的负载均衡,以及锂源的可持续性,因为锂资源的地球储量相对有限,这必将导致锂资源紧张和原材料价格飙涨。因此,单靠LIB能否满足小型和/或中大型储能应用不断增长的需求仍不清楚。为了缓解这些问题,最近的研究集中于替代能源储存系统。钠离子电池(Sodium ion batteries,简称SIB)被认为是最佳候选电源。

为什么是钠离子电池?

钠是地球上第四丰富的元素,其分布似乎是无限的。含钠前体的供应量巨大。与碳酸锂相比,资源丰富且生产碳酸钠的天然碱成本低得多,这为开发用作锂离子电池替代品的钠离子电池提供了令人信服的理由。

SIB的研究史

由于需要锂的替代品来实现大规模应用,近年来,钠离子电池引起了相当多的研究关注。其实,自1970年代和1980年代开始开发LIB时,就开始研究SIB,但由于LIB商业应用的快速发展和成功,SIB在很大程度上被放弃。此外,在这些年中,材料、电解质和手套箱的整体质量不足以处理钠,因此难以观察电极性能。

20世纪80年代,在锂离子电池商业化之前,一些美国和日本公司开发了全电池配置的钠离子电池,其中钠铅合金复合材料和P2型NaxCoO2分别用作阳极和阴极。尽管在300次循环中具有显著的可循环性,但平均放电电压低于3.0 V,这对于平均放电电压为3.7 V的碳/LiCoO2电池没有引起太多关注。

SIB和LIB的异与同

除了离子载体外,SIB和LIB的电池组件和电存储机制基本相同。就阴极材料而言,钠的嵌入化学与锂的嵌入化学非常相似,因此可以在两种系统中使用类似的化合物。

然而,SIB和LIB之间存在一些明显的差异。与Li+离子(0.76)相比,Na+离子的体积更大,这会影响相稳定性、输运性质和界面形成。钠(23 g·mol-1)也比锂(6.9 g·mol-1)重,并且具有更高的标准电极电位(钠vs SHE为-2.71V,锂vs SHE为-3.02V)。因此,SIB在能量密度方面总是达不到要求。不过,可循环锂或钠的重量仅占组件质量的一小部分,容量主要由用作电极的主体结构的特性决定。因此,原则上,从LIB到SIB的过渡不应产生能量密度较大差异的结果。此外,相对于Li/Li+,铝与锂发生低于0.1 V的合金反应,这表明铝可用作钠电池阳极的集电极。因此,铝作为SIB的阳极集电极是铜的一种经济高效的替代品。

因此,对SIB的研究可以借鉴LIB的研究经验但却无法完全移植,需要寻找适合SIB的材料,构建合适的SIB体系。

SIB比LIB成本更低吗?

对于这个问题,Christoph Vaalma等进行了研究论证。成本分析表明,用钠代替锂不会直接显著降低电池成本。然而,在锂短缺和相关价格上涨的情况下,使用钠可以带来巨大的成本优势。相比之下,在SIB中,集电极从铜到铝的替代可以对最终电池价格产生重要影响。

此外,在阳极处使用铝箔还可以提供其他优点,如减少电池重量、减少过放电问题和更安全的电池运输。

对于阴极材料,在容量方面已报道了令人兴奋的进展,但平均工作电势是一个有待优化的关键参数,始终与增加的材料密度相结合,以减少对昂贵电解质的需求。

对于阳极,石墨已被证明是LIB中非常合适的材料,但其对钠离子的储存能力较差。通常提出的替代方案—硬碳—很容易合成,但单位质量和体积的钠含量低于锂。此外,硬碳密度较低,这增加了对耦合电池材料的需求和成本,尤其是电解质。

因此,具有改进的电化学性能和更高密度的优化硬碳可能会提高SIB的竞争力,但通过使用例如硬碳支持高体积和重量容量存储材料的复合电极,这些电池的成本可能会大幅降低。

此外,SIB之所以有优势不仅仅与避免使用锂有关,还因为可以避免使用钴元素,在层状氧化物中使用钴被认为是锂离子储存的较优选择,但在钠离子储存中不需要。尽管约三分之二的锂储量集中在南美洲,但这些储量的规模足以大幅提升电动汽车的产量,而钴的供应已经面临压力。

尽管增加使用贫镍/钴材料将减少对钴的需求,但对锂的需求将保持在相同水平,电池成本将大幅增加。因此,SIB可以成为未来储能解决方案的一部分,但其竞争力(如电化学性能)仍有待提高,可能需要通过优化材料。不过,锂和钴供应短缺将使SIB成为更具吸引力和成本竞争力的替代方案。

《钠离子电池先进技术及应用》针对钠离子电池关键材料的基础研究与高性能钠离子电池的制备技术进行了探索。书中从各种材料的机理研究、改性研究和应用研究三个方面进行了详细的讨论,并介绍了多种研究技术,包括同步辐射技术、中子衍射技术和电化学原位测试技术等,从微观到宏观揭示了不同材料的作用机制与发展前景。 总结了钠离子电池工业化在经济、环境、资源和技术等方面的优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭