当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:针对三相全波六状态工作无刷直流电机霍尔位置及特定换相逻辑下的电机旋向问题,提出一种通过右手螺旋定则确定每相绕组磁势方向进而确定电机霍尔位置,随后通过左手定则及牛顿第三运动定律对电机旋向进行判断的简易方法:并通过两款电机实际工程验证,确定该方法的正确性及普遍适用性。

引言

无刷直流电机与有刷直流电机相比,不会产生有刷电机换相火花现象以及随之带来的电刷磨损问题,具有寿命长、噪声低、免维护等优点,因此其在空间飞行器领域广泛运用,并逐步取代了传统有刷直流电机。由于无刷直流电机通过逻辑开关电路实现电子换相,因此其需要位置传感器对转子磁极位置进行检测,以保障电子换相的准确性。霍尔位置传感器由于结构简单、易集成、占地小等优势,目前使用率最高。精确确认霍尔传感器位置是确保电机高效运行的关键所在,本文主要对目前常用的三相全波六状态工作方式绕组星形连接的无刷直流电机霍尔传感器正确位置及电机旋向确认方法进行介绍,并结合工程实际案例进行说明。

1霍尔传感器位置及电机旋向确认方法

由于影响霍尔传感器位置的因素众多,为简化分析方法,下文分析基于如下约定:(1)示例电机所选霍尔器件为锁存型霍尔器件,其逻辑1和逻辑0各占180o电角度:(2)霍尔标志面朝向磁钢N极时输出逻辑1,朝向磁钢S极时输出逻辑0:(3)霍尔信号跳变至对应逻辑状态时,相关绕组同时导通:(4)示例电机铁芯为直槽结构,针对斜槽电机,根据斜槽方式的不同,磁势需旋转斜槽角度的一半,具体旋转为从出线端看,同一槽如果轴伸端槽口位于出线端槽口左侧则逆时针旋转,如果轴伸端槽口位于出线端槽口右侧则顺时针旋转。

1.1电枢绕组图绘制

在绘制电枢绕组磁势向量星形图前需绘制电机电枢绕组图。工程上,电枢绕组图可根据工程仿真软件所绘绕组分布图直接画出,本文依据Ansoft仿真软件中绕组分布图进行绘制。Ansoft所示绕组分布图视图方向为从电机轴伸端视之,绕组分布图中相序标记前为"-"表示电流方向为垂直纸面流入,相序标记前无符号表示电流方向为垂直纸面流出。

图1所示为4极12槽整数槽电机绕组分布图,图2所示为20极18槽分数槽电机绕组分布图。

图1 4极12槽电机绕组分布图

根据绕组分布图及Ansoft中电流方向定义可绘制两款电机电枢绕组图,分别如图3、图4所示,图中箭头方向为电流方向,序号表示铁芯槽号。

1.2绕组磁势图绘制

通过分析,电机霍尔传感器位置位于磁势轴线上,对于三相无刷电机,无论其绕组结构如何,在1对极下,共有两组6个霍尔传感器位置可供选择。霍尔HA、HB、HC分别位于磁势FB、FC、FA或-FB、-FC、-FA位置。

通过图3所示绕组图及右手螺旋定则可绘制出图5所示的4极12槽电机A相绕组磁势图,磁势图视图方向为电机尾部出线端视之。其中1槽及7槽代表A相电流垂直纸面流入,4槽及10槽代表A相电流垂直纸面流出。同理,可将该4极12槽电机绕组磁势全部绘出,如图6所示。

图2 20极18槽电机绕组分布图

图3 4极12槽电机绕组图

图4 20极18槽电机绕组图

图5 4极12槽电机A相磁势图

图6 4极12槽电机磁势图

进一步观察可以发现,对于整数槽电机,各相磁势皆位于各齿中心线,由于三相电机1对极下存在6个霍尔传感器位置,因此所有齿中心线为该类电机所有允许分布的霍尔传感器位置。

对于分数槽集中绕组电机,由于三相绕组未均匀间隔分布,因此需要通过矢量合成方式绘制三相绕组每相合成磁势,随后通过阵列的方式绘出所有磁势方向。通过图4所示绕组图及右手螺旋定则可绘制出图7所示的20极18槽电机绕组合成磁势图,磁势图视图方向为电机尾部出线端视之。通过阵列方式可绘制该电机所有磁势,如图8所示。

无刷电机霍尔传感器位置及电机旋向确认方法研究

通过观察示例电机磁势图可以发现,相邻两磁势间方向相反,A、B、C三相磁势依次交替分布。对于极对数较多的情形,可通过该结论判断磁势图绘制的正确性。

1.3电机旋转方向

通过上文分析拟选定两款电机,霍尔传感器位置分别如图9、图10所示,20极18槽电机为霍尔双备份结构。

图9 4极12槽电机霍尔传感器位置

图10 20极18槽电机霍尔传感器位置

针对两相导通三相六状态电机,目前常用控制器换相逻辑如表1所示。假定4极12槽电机转子初始位置如图11(a)所示。

该电机霍尔标志面背对磁钢,此时霍尔HA、HB、HC输出真值为011,绕组电流由C相通至A相,A相、C相所在槽电流方向为1槽、2槽、7槽、8槽垂直纸面流出,4槽、5槽、10槽、11槽垂直纸面流入。状态1时磁钢N极与1槽相对,槽中导体磁场方向为F,根据左手定则,此时槽中导体所受电磁力方向为f,根据牛顿第三运动定律,施加于转子磁钢上的反作用力方向为f'。同理,可对其他槽内导体进行分析,此时电机转子呈现图示顺时针方向运动趋势。当转子运行至图11(b)所示状态2,此时霍尔HA、HB、HC输出真值为001,槽内电流方向及转子受力方向如图11(b)所示,经分析电机仍保持顺时针方向运动。通过上述方法可对电机6个状态进行分析,出线端视之电机皆顺时针运行。因此,若电机霍尔传感器处于图9所示位置,电机按表1所示真值进行换相,则出线端视之电机顺时针旋转。

假定20极18槽电机转子初始位置如图12(a)所示,该电机霍尔标志面朝向磁钢,此时霍尔HA、HB、HC输出真值为001,按上述分析方法,此时槽内电流方向及转子受力方向如图12(a)所示,电机转子呈现图示顺时针方向运动趋势。当转子运行至图12(b)所示状态2,此时霍尔HA、HB、HC输出真值为101,槽内电流方向及转子受力方向如图12(b)所示,经分析电机仍保持顺时针方向运动。通过上述方法可对电机6个状态进行分析,出线端视之电机皆顺时针运行。因此,若当电机霍尔传感器处于图10所示位置,电机按表1所示真值进行换相,则出线端视之电机顺时针旋转。

无刷电机霍尔传感器位置及电机旋向确认方法研究

2实物验证

图13(a)及图14(a)分别为两款电机霍尔传感器实际安装位置示意图,安装位置与理论分析位置一致。图13(b)及图14(b)为两款电机出线端顺时针运行时霍尔传感器输出波形,波形从上到下依次为霍尔HA、HB、HC输出波形,霍尔真值变化情况与分析结果一致。

3结语

本文通过上述两个例子,验证了上述霍尔传感器位置及电机旋向确认方法的准确性。针对两相导通三相六状态电机,无论是整数槽绕还是分数槽绕,上述方法均具有普遍适用性。上述方法所得出的霍尔传感器位置为该类电机所有霍尔传感器位置,实际运用过程中可根据空间结构、尺寸等限制条件选取满足要求的霍尔传感器位置。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭