当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:通过中低压联通管打孔抽汽改造实现抽凝供热的煤电机组,普遍存在设计采暖抽汽压力高于实际供热需求压力的情况,采暖抽汽压力对于机组整体循环效率具有较大影响,而近期较为流行的低压缸进汽全切灵活性调峰改造技术在一定条件下会引起中压缸排汽压力进一步上升,从而影响机组循环效率。为进一步提升机组运行经济性,对低压缸进汽全切与采暖抽汽余压利用背压机联合运行的双背压运行方式进行了更深入的研究。

引言

热电联产机组通过高品质蒸汽的梯级利用,可提升机组总效率至60%~80%,因此供热改造作为节能减排、提质增效的主要手段被列入煤电机组升级改造实施计划。大唐集团京津冀区域有供热机组30台,其中16台为后改造供热机组,供热压力设计值普遍为0.8MPa,对于一般性供热供回水温度130/70℃的热网系统,热网加热器压力0.3MPa基本满足使用需求,因此对于后改造供热机组,中低压缸分缸压力0.8MPa机组进行供热时,存在较大换热损,造成抽汽能量利用不充分,热电联产机组热效率也随之降低,而采用余压利用背压机方式,约可提升效率16.9%。当前,随着碳达峰等目标的提出,北方燃煤供热机组成为灵活性调峰任务的主力机,且负荷深度、调峰时长需求逐年增加,供热期内较多机组采用了低压缸进汽全切作为技术手段满足电网及热网的双重需求,对于供热抽汽压力较高的机组开展切缸工作,采暖抽汽量的增加,将带来更多的换热损,因此研究汽轮机低压缸进汽全切及采暖抽汽余压利用背压机的节能收益,实现双重调峰节能改造,可进一步提高机组盈利能力。

1案例机组介绍

某机组汽轮机为东方汽轮机有限公司改造的320Mw亚临界、一次中间再热、单轴、两缸两排汽、抽汽凝汽式发电机组(型号N320-16.7/537/537),该机组已于2013年供热改造,采用中低压联通管打孔抽汽方式,改造后额定抽汽压力0.8MPa、抽汽流量330t/h、最大抽汽工况流量400t/h。设计热网供水压力2.5MPa,供回水温度130/70℃,实际运行热网供水压力1MPa,供水温度60~87℃,回水温度45~58℃。实际运行中,采暖抽汽压力微正压即可满足需求,而运行采暖抽汽压力往往在0.4MPa左右。为利用采暖抽汽多余压力,减少换热损,2018年改造完成余压利用背压机,背压机采用杭州汽轮机股份有限公司制造的单缸、单轴、双流、反动式背压机,型号B25-0.726/0.13(wG80/71),配一台额定功率25Mw的杭州杭发电机设备有限公司生产的发电机(型号0F-J25-2),采用高起始响应的自并励静态励磁系统。2020年,为响应电网调峰需求及获得京津冀地区灵活性调峰改造奖励,该机组进行了低压缸进汽全切灵活性调峰改造,改造后联合余压利用背压机实现大小机双背压运行模式,如图1所示。

2系统改造及热力系统计算

为了解大小机双背压运行模式经济性,利用Ebsilon软件建立热力系统模型(图2)并结合实际运行工况参数变化特性进行经济性分析。采用vwo设计工况数据进行模型构建,厂家提供vwo热平衡图功率为333.621Mw,热耗率为7985kJ/kw·h,Ebsi1on软件模拟计算结果为332.403Mw,热耗率为7996.165kJ/kw·h,分别偏差0.37%、0.14%。该模拟计算结果可以满足数据趋势对比分析要求。修改模型至低压缸进汽全切工况,如图3所示,采用定采暖抽汽流量及大发电功率为基准进行比较,模拟计算汽轮机低压缸进汽全切及余压利用背压机联合运行三组不同工况下的节能效果,参数如表1、表2、表3、图4、图5、图6所示。

图2Ebsilon常规热力系统模型

图3Ebsilon大小机双背压运行热力系统模型

工况描述:1.切缸工况,假设中排压力不提升,余压背压机不运行:2.切缸工况,假设中排压力不提升,余压背压机运行(双背压运行工况):3.切缸工况,中排压力上升0.05MPa,余压背压机不运行:4.切缸工况,中排压力上升0.05MPa,余压背压机运行(双背压运行工况)。

供热系统中双背压运行经济性分析

锅炉最低稳燃负荷工况下,低压缸进汽全切后,通过模拟计算发现,在切缸后,若中排压力提升0.05MPa,较中排压力不上升时出现机组热耗率上升现象,证明供热系统存在一定的节流损失,导致热力循环效率降低,而利用余压背压发电机,在汽轮机低压缸进汽全切后,可有效吸收切缸带来的压力上升,从而缓解切缸过程中的参数波动及提升机组节能效果。通过三组工况数据进行对比,热耗率变化趋势一致。

由图4、图5、图6可以看出,在中排压力一定的情况下,大机背压运行后余压利用背压机运行将进一步降低机组热耗率,实现较大节能目标。根据案例机组运行经验可知,汽轮机机组切缸运行时,若不增加供热面积势必引起中排压力的上升(约0.05MPa),中排压力上升将会导致机组整体热耗率出现较大的上升情况[4],此时即使增加余压利用背压机,在大负荷供热情况下也可出现热耗率大于中排压力不上升时热耗率的现象。而根据案例机组改造后运行情况,汽轮机进行低压缸进汽全切操作前投入余压利用背压机,切缸操作时中排压力出现短暂上升后,在不调整热网负荷时,可恢复至切缸前的状态,余压利用背压机发挥了压力吸收作用。通过三个工况模拟计算结果可以看出,余压背压机旁路流量增大时,出现余压利用背压机投运节能效果下滑现象。

3结论

本文对典型300Mw打孔抽汽改造汽轮机进行热力系统模拟计算,寻找在汽轮机低压缸进汽全切工况下,投入余压利用背压机的节能效果趋势,同时对比了中压缸排汽压力上升对于机组热耗率的影响,结合现场实际运行工况进行分析,得出以下结论:

(1)若低压缸进汽全切机组供热面积不增加,切缸后中排压力上升将带来较大的热耗上升,低负荷时尤为明显。

(2)双背压机运行模式可有效解决切缸后中排压力上升问题,同时存在十分可观的节能效果。

(3)低压缸进汽全切系统虽然整体改造存在较大的节能效益,但粗略的调整可能损失一部分收益。

(4)余压利用背压机除吸收多余中排压力进行做功,达到节能效果外,在当前深度调峰的环境下,通过采取背压发电模式,可增加机组在供热期的调峰能力约45Mw,实现企业节能、调峰双收益。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭