当前位置:首页 > 厂商动态 > Intel
[导读]英特尔研究院推出了Kapoho Point开发板,更新了Lava框架,并公布了新增的英特尔神经拟态研究社区(INRC)支持项目。

通过去年发布的Loihi 2第二代研究芯片和开源Lava软件框架,英特尔研究院正在引领神经拟态计算的发展。作为英特尔神经拟态技术商业化目标的一部分,英特尔研究院正在向开发者提供新工具,以便将开发过程推进到下一阶段。例如,8芯片Loihi 2开发板Kapoho Point,就可以通过堆叠满足大规模工作负载的需求,并可实现与低延迟事件相机(event-based vision sensors)的直接互连。


英特尔发布一系列新进展,推进神经拟态计算的应用开发

Loihi 2是英特尔的第二代神经拟态研究芯片。它支持新型类脑算法和应用程序,提供更快的处理速度与更高的资源密度,同时提高能效。

此外,英特尔研究院还更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。从最新版Lava(v0.5)开始,与Loihi 1系统上的相同工作负载相比,这些新功能使Kapoho Point运行深度学习应用的速度提高了12倍,能耗也降低了15倍1。此外,英特尔还通过英特尔神经拟态研究社区(INRC)启动了八个由英特尔赞助的大学项目。

向社区成员交付下一代神经拟态系统

基于Loihi 2的开发板Kapoho Point是一个紧凑系统(compact system),非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用。Kapoho Point可以运行包含多达10亿个参数的AI模型,也能解决涵盖多达800万个变量的优化问题。与在CPU上运行的先进求解器相比,它把速度提高了10倍以上,能耗降低了1000倍。此外,还能通过堆叠多个开发板实现Kapoho Point的扩展,以解决更大规模的问题。


英特尔发布一系列新进展,推进神经拟态计算的应用开发

基于Loihi 2的开发板Kapoho Point是一个紧凑系统,非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用。

美国空军研究实验室(AFRL)是研究社区中第一个启用Kapoho Point的成员,正在把它用于内部研究,涉及基于脉冲神经网络的学习以及需要实时优化的问题。数据处理与开发高级科学家Qing Wu博士表示:“由于美国空军研究实验室的任务是在空中和太空中进行的,这使得移动平台的空间、重量和功率预算(power budget)非常有限。对在这种环境中运行AI算法的需求而言,神经拟态计算技术提供了非常出色的计算解决方案。”

通过Lava软件框架,

降低神经拟态开发的门槛

对开源、模块化且可扩展的Lava软件框架的更新包括面向Loihi 2功能集的一系列改进,例如可编程神经元、分级事件和持续学习。


英特尔发布一系列新进展,推进神经拟态计算的应用开发

英特尔研究院更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。

Lava软件框架可以在GitHub上免费下载。

神经拟态生态系统项目

英特尔神经拟态研究社区(INRC)已经启动了八个由英特尔支持的大学项目,包括乔治梅森大学、昆士兰科技大学、格拉茨技术大学、苏黎世大学 、布朗大学、宾夕法尼亚州立大学、滑铁卢大学和哥廷根大学。

研究项目包括自适应机器人定位、可用于脑机接口的无线仿生传感脉冲解码、神经拟态贝叶斯优化、听觉特征检测以及新型类脑架构和算法。

自2018年成立以来,英特尔神经拟态研究社区的成员数已增加到180多个,包括大学实验室、政府机构以及埃森哲、联想、罗技和梅赛德斯-奔驰等全球领先企业。

接下来,英特尔研究院将为开发人员不断提供新工具,让他们能更轻松地开发解决现实问题的应用,并继续支持社区研究。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭