当前位置:首页 > 电源 > 功率器件
[导读]金属氧化物半导体场效应晶体管(MOSFET)是一种电压控制器件,由源极、漏极、栅极和主体等端子构成,用于放大或切换电路内的电压,也广泛用于数字应用的 IC。此外,也用于放大器和滤波器等模拟电路。MOSFET的设计主要是为了克服FET的缺点,例如高漏极电阻、中等输入阻抗和运行缓慢。MOSFET有增强型和耗尽型两种。本文主要介绍耗尽型MOSFET,以及它的使用场景。

金属氧化物半导体场效应晶体管(MOSFET)是一种电压控制器件,由源极、漏极、栅极和主体等端子构成,用于放大或切换电路内的电压,也广泛用于数字应用的 IC。此外,也用于放大器和滤波器等模拟电路。MOSFET的设计主要是为了克服FET的缺点,例如高漏极电阻、中等输入阻抗和运行缓慢。MOSFET有增强型和耗尽型两种。本文主要介绍耗尽型MOSFET,以及它的使用场景。

什么是耗尽型MOSFET?

连接时通常打开而不施加任何栅极电压的MOSFET称为耗尽型MOSFET。在这个MOSFET中,电流从漏极端流向源极。这种类型的MOSFET也被称为通常在设备上。

一旦在MOSFET的栅极端施加电压,源极沟道的漏极将变得更具电阻。当栅源电压增加更多时,从漏极到源极的电流将减少,直到电流从漏极到源极的流动停止。

N 沟道耗尽型MOSFET

N沟道耗尽型MOSFET的结构如下图所示。在这种耗尽型MOSFET中,源极和漏极通过一小条 N 型半导体连接。这种MOSFET中使用的衬底是 P 型半导体,电子是这种MOSFET中的主要电荷载流子。在这里,源极和漏极被重掺杂。

N 沟道耗尽型MOSFET结构与增强型 n 沟道MOSFET结构相同,只是其工作方式不同。源极和漏极端子之间的间隙由n型杂质组成。

当我们在源极和漏极等两个端子之间施加电位差时,电流会流过衬底的整个 n 区。当在该MOSFET的栅极端施加负电压时,电荷载流子(如电子)将在介电层下方的 n 区域内被排斥并向下移动。因此,在通道内将发生电荷载流子耗尽。

因此,整体沟道电导率降低。在这种情况下,一旦在 GATE 端施加相同的电压,漏极电流就会减小。一旦负电压进一步增加,它就会达到夹断模式。

这里的漏极电流是通过改变沟道内电荷载流子的耗尽来控制的,所以这被称为耗尽型MOSFET。这里,漏极端子处于+ve电位,栅极端子处于-ve电位,源极处于“0”电位。因此,与源极与栅极相比,漏极与栅极之间的电压变化较高,因此与源极端相比,耗尽层宽度与漏极相比较高。

P沟道耗尽型MOSFET

在 P 沟道耗尽型MOSFET中,一小条 P 型半导体连接源极和漏极。源极和漏极为P型半导体,衬底为N型半导体。大多数电荷载流子是空穴。

p 沟道耗尽型MOSFET结构与 n 沟道耗尽型MOSFET完全相反。该MOSFET包括一个在源极和漏极区域之间制成的沟道,该沟道用p 型杂质重度掺杂。因此,在这个MOSFET中,使用了 n 型衬底,沟道为 p 型,如图所示。

一旦我们在MOSFET的栅极端施加 +ve 电压,那么 p 型区域中的少数电荷载流子(如电子)将由于静电作用而被吸引并形成固定的负杂质离子。因此,将在通道内形成耗尽区,因此,通道的电导率会降低。这样,通过在栅极端施加+ve电压来控制漏极电流。

一旦我们在MOSFET的栅极端施加 +ve 电压,那么 p 型区域中的少数电荷载流子(如电子)将由于静电作用而被吸引并形成固定的负杂质离子。因此,将在通道内形成耗尽区,因此,通道的电导率会降低。这样,通过在栅极端施加+ve电压来控制漏极电流。

要激活这种耗尽型MOSFET,栅极电压必须为 0V,并且漏极电流值要大,以便晶体管处于有源区。因此,再次打开这个MOSFET,+ve 电压在源极端给出。因此,如果有足够的正电压并且在基极端子上没有施加电压,这个MOSFET将处于最大工作状态并具有高电流。

要停用 P 沟道耗尽型MOSFET,有两种方法可以切断偏置正电压,即为漏极供电,否则您可以向栅极端子施加 -ve 电压。一旦向栅极端子提供-ve 电压,电流将减小。随着栅极电压变得更负,电流减小直到截止,然后MOSFET将处于“关闭”状态。因此,这会阻止大的源极漏电流。

因此,一旦向该MOSFET的栅极端子提供了更多的 -ve 电压,那么该MOSFET将在源极 - 漏极端子上传导更少和更少的电流。一旦栅极电压达到某个 -ve 电压阈值,它就会关闭晶体管。因此,-ve 电压关闭晶体管。

许多开关模式电源使用“启动”电路来初始化其离线操作。这些电路可能是简单的电阻器,例如International Rectifier的 IRIS4015,或者是使用双极晶体管或 MOSFET 构建的更复杂的布置。这些晶体管为反激式或 PFC(功率因数校正)IC 提供初始电流。当这种电源开始在正常模式下运行时,来自专用绕组的电源电压会继续为 PFC IC 供电,从而降低启动电路的功耗。

这种方案降低了——但不会消除——启动电路的功耗,因为有源元件通常是高压双极晶体管或高压增强型 MOSFET。这些晶体管的基极或栅极需要相对于发射极或源极进行正向偏置才能正常工作。因此,在保持晶体管处于关闭状态的电路中总是会发生功率损耗。不幸的是,工程师对耗尽型 MOSFET 的关注太少,因为它不需要正向偏置即可正常工作,而且需要低于源极的栅极电位。耗尽型 MOSFET 的这些宝贵特性使其适合在电源的无损耗启动电路中发挥作用。

显示了一个传统的 PFC 电路,其 IC 最初通过耗尽型 MOSFET Q 2 (来自Supertex的 DN2470 )从输出接收功率。Q 2的源极为 PFC IC 1 提供大约 10 到 15 mA 或更小的初始电源电流,具体取决于 IC 型号。大约 4 到 6W 的短暂功耗不会对焊接到覆铜的 MOSFET 造成损害。如果您担心 MOSFET 的健康状况,可以使用 Ixys 的IXTY02N50D。电阻器 R 3 和 R 4 设置 Q 2的工作点获得所需的最小电流。对于 18V 的输入电压,齐纳二极管 D 5 将 IC 1两端的电压限制在 大约 15V,这对于大多数 PFC IC 通常是必需的,并且小于 MOSFET Q 2的最大值。


当IC 1 开始正常工作时,PFC 电感L 的次级绕组产生IC 的电源电压,二极管D 1 和D 3 以及电容器C 1 和C 2 调节。晶体管Q 2 在短时间内 持续为齐纳二极管D 5 和IC 1供电。最终,双极晶体管Q 3 通过电阻器R 5 从二极管D 2获得其基极电源,打开并将Q 2的栅极钳位到地。问题3的电源是IC 大约15V 的正电源电位,足以关断Q 2。10 至 20 µA 的剩余热电流不会产生明显的功率损耗。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭