当前位置:首页 > 电源 > 功率器件
[导读]我们可以根据可用数据为 X7R 电容器建立比较图表。显示了 DC 偏置、温度和时间老化对现代应用可能选择的两个电容器的累积影响。

我们可以根据可用数据为 X7R 电容器建立比较图表。显示了 DC 偏置、温度和时间老化对现代应用可能选择的两个电容器的累积影响。

来自制造商数据的两个 X7R、0603 尺寸电容器的比较。两者都假定具有 5V 偏置并在 70 摄氏度下工作。即使其中一个部件的初始电容是两倍,但在 100,000 小时时的最终结果要接近得多。所有数据均基于制造商的数据表,估计老化 100,000 小时。

第一个电容是 1µf, 25V, 0603 尺寸,第二个是 2.2µf, 10V, 0603 尺寸,两者都假定偏置为 5V,工作温度为 70 o C。100,000小时的总老化是由于正常老化,加上直流偏置,加上工作温度,从参考手册推断为 -25% 最坏情况。请注意:上面的关键词是“外推”,因为我没有自己的数据来支持这一点。

即使是项的这种线性乘法相加也具有误导性,因为在任何情况下总和不可能大于可能的 80% 电容下降总和。这是因为当所有的磁偶极子 100% 排列整齐时,材料仍然会有一些剩余的介电常数。因此,这种情况比表 1 所示的简单的餐巾背面线性计算更为复杂。

更有可能的是下面的情况,它仅来自几家制造商发布的关于直流偏置效应的数据。下面确实显示了当电介质材料偶极子排列从 0%(完全随机)增加到 100%(完全排列)时电容器的电容会发生什么变化,这代表了直流偏置、工作温度和老化的绝对最坏情况结合。通过研究几家制造商的直流偏置与电容变化曲线绘制了一张图,并推断该曲线显示了可能的电容变化与 X7R 电容器介电材料偶极子排列的关系。0% 是随机对齐(左侧 x 轴),100% 是当偶极子对齐时(右侧 x 轴),显示大约 80% 可能的总电容损耗。

结论

对我来说,这一切的收获是:

1) 在 2017 年的“大电容器短缺”之后,当制造商争先恐后地满足订单和替代品(已知和未知)时,X7R 零件的行为方式让我遇到了严重的问题。我发现 DC 偏压下的电容下降更严重,以及在看似相同的零件编号出现短缺之前和之后生产的电容器批次之间的其他参数问题。

这让我对信任已有数十年历史的制造商发布的信息持怀疑态度,尤其是在技术变化如此之快的情况下。即使您进行了自己的可靠性研究,您也无法确定下一次电容器短缺何时会再次改变所有配方并使一切化为乌有。

2) 关于随着直流偏置和升高的工作温度而增加老化率的最新信息似乎表明,在 10 年后,设计人员可能明智地在预期 X7R 电容下降的基础上再增加 25%,因为老化 + 工作温度 + 直流偏置老化效应。这是由于容差、温度系数和 DC 偏压导致的初始电容下降。

3) 这种加速的直流偏置 + 升高的工作温度电容下降表明,使用高温、加速寿命测试至少 1000 小时可能有助于了解预期寿命更长的产品的预期真实电容变化。注意:您不能超过 90 o C,以免在测试电容器时使电容器老化。

4) 使用低额定电压,在高工作电压百分比下运行的高电容 X7R 电容器可能会对开关电源的大容量输出滤波产生问题,其中电容用于稳定控制回路,特别是如果您必须达到更长的工作时间寿命。在高温下测试至少 1000 小时,或使用另一种久经考验的真正电容器技术,如钽或铝电解电容器,以满足您的大容量电容需求。

5) 使用低额定电压、在高工作电压百分比下运行的高电容 X7R 电容器可能适用于低压差稳压器 (LDO) 输出滤波应用。在这些应用中,可能需要最大串联电阻值,也许还需要一些最小电容值,但在这些值的相反极端情况下,通常仍会提供稳定的稳压器。检查监管机构的数据表进行验证。

6) 由于 X7R 是所有其他 2 类介电电容器中最好的,因此似乎强烈建议 X5R 仅用于多兆赫数字电路上的高频旁路,其中电容器最重要的方面是串联电感而不是任何电容值。

我查看了制造商发布的两种常见 0603 尺寸 X7R 电容器类型的电容与直流偏置数据。第一个是常见的 0.1µF、50V,用于去耦,第二个是高密度 1µF、10V 类型。可以看出,每个制造商都有不同的 X7R 电介质配方,并且会根据电容器的额定电压而变化。当您遇到短缺并选择其他“等效”零件编号时,请记住这一点,它可能不像您想象的那么等效!


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭