当前位置:首页 > > Techsugar
[导读]“FinFET之后,所谓的14nm、10nm、7nm、5nm工艺只是一个数字,其实它根本不是半导体的线宽。所以我们的发展还没有到半导体行业的极限值。”说这话的是海思平台与关键技术开发部部长夏禹女士。

“FinFET之后,所谓的14nm、10nm、7nm、5nm工艺只是一个数字,其实它根本不是半导体的线宽。所以我们的发展还没有到半导体行业的极限值。”说这话的是海思平台与关键技术开发部部长夏禹女士。


虽说在今年的CDNLIVE上,夏禹女士为摩尔定律站台,表示摩尔定律还会持续不断的推动半导体产业发展。但她也承认先进半导体工艺技术目前只空有数字,用另一种方式来呼应摩尔定律。关于摩尔定律到底是死是活问题,在过去几年一直争论不休,很显然,如今处于“薛定谔的摩尔定律”时代。

遥想50几年前,时任仙童半导体研发总监的戈登·摩尔给集成电路行业算了一卦:“集成电路上被集成的晶体管数目,将以12个月翻一翻的速度增长。”这就是所谓的摩尔定律,10年后该定律得到进一步修正,改为晶体管的数目增长每两年增加一倍。给人印象最深的当属集成电路中单个晶体管的价格,从上世纪六七十年代的1美元飞流直下,到了二十一世纪,单个晶体管价格仅为1美元的千万分之一。


图片来源:WSTS


在享受科技大爆炸所带来便利的同时,摩尔定律似乎有点撑不下去了,毕竟这定律里讲的是“增加一倍”。随着基数越来越大,这一倍的增长速度似乎走的有些艰难。


说着说着就死了?

整个行业在2005年就观察到摩尔定律失效的征兆,那时研究人员开始担心计算机芯片太热,芯片的热功率将很快赶上太阳表面的热功率。


除此之外,认为摩尔定律都到尽头的还有台积电创始人张忠谋,在2017年的TSMC 30周年庆高峰论坛上,他表示:“Intel联合创始人戈登摩尔所判断的‘大约每两年,晶体管密度就会增加1倍’的说法在2025年将遇到极大的挑战。”


说死摩尔定律的最佳代表就是黄仁勋,去年的NVIDIA GTC China大会上,黄仁勋开场就语出惊人:“设计人员无法再创造出可以实现更高指令级并行性的CPU架构。晶体管数每年增长50%,但CPU的性能每年仅增长10%。摩尔定律已经终结!”


今年,黄仁勋在美国加州圣何塞举办了其第10届年度图形处理器(GPU)技术大会(GTC),又表达了一次这个观点。不仅如此,他还将GPU捧上了天,认为GPU的发展遵循一种新的“超动力”定律。不知道后人会不会因此把GPU发展过程定为“黄氏定律“,亦或者叫“皮夹克定律”。


不过去年英特尔对摩尔定律死否会失效的问题,坚定的给出两个字的回答——不会!



摩尔定律的挣扎

早期,集成芯片性能的提升需要在芯片上添加更多的电子元件。想要实现这一目标看似简单,只要将包含了电子元件的各类应用程序进行可靠且廉价的打包即可。但是这种做法的结果是使得集成芯片变得越来越大,也越来越复杂。在上世纪 70 年代初期,为了解决这一问题,微处理器诞生了。


上世纪80年代到90年代初期,出现了4M DRAM,而到了 1992 年 16-MB DRAM 也出现了。每一次进化都意味着集成芯片的工作能力变得更强大,因为在不增加成本的情况下单个芯片中所能包含的晶体管变得越来越多。


到了90年代以后,我们开始自然的选择“缩减”这个套路来延续摩尔定律。并且每当工艺尺寸缩小时,都会有一些美好的事情发生——比如芯片处理速度的提升为功耗的降低提供了相应的空间,从而自然地对发热量进行控制。


但到了二十一世纪后,工艺制程发展到了90nm以下时,这种增益效应就开始不再明显。制造商们发现,电子在硅电路中跑得愈快,芯片就愈热。


“聪明”的制造商们开始不再提升主频,以这种限速的方法来控制热量产生。此外,为了解决限速的问题,芯片商开始使用多核芯片的思路。从理论上讲,内置4颗250MHz的芯片和单颗1GHz的芯片在处理速度上是一致的,但在现实中,想要用4颗处理器协同运算就意味着需要把单一任务分成八个部分来处理。而对于许多任务来说这一拆分过程也是十分困难的。


然而再过去的10来年,芯片的光刻工艺变得越来越复杂,制造成本在不断的提升。虽说晶体管的体积每年都在缩小,但越来越贵了。


摩尔定律前方是星辰大海

2016年,美国团队就宣布研制出的1纳米晶体管。不过据研究团队介绍,这个研究还处于一个很早期的阶段。实验室团队还没有一个可行性方案大批量制造。


不过3nm芯片似乎已经有了苗头,在今年3月1日,纳米电子与数字技术研发创新中心imec与Cadence联合宣布,业界首款3nm测试芯片已成功流片。该项目采用EUV技术,193浸没式(193i)技术规则。


其实科研人员已经不单关注芯片制造技术,开始将眼光放到半导体材料上。比如:锑化铟和铟镓砷化合物等。在许多备选材料中,二维材料“石墨烯”被看好。这种自旋电子材料通过翻转电子自旋来计算,而不是通过移动电子。这种“毫伏特”量级(操作电压比“伏特”量级的晶体管要低得多)的电子开关比硅材料开关的速度更快,而且发热量更小。


斯坦福大学的电气工程师Subhasish Mitra和他的同事在两年前就已经开发出用碳纳米管将3D存储单元层连接起来的办法,这些碳纳米管承载着层间的电流。 该研究小组认为,这样的体系结构可以将能耗降低到小于标准芯片的千分之一。


当然还有一种被业内人士看好的神秘技术——量子计算。


如果单从最近几年发展来看,夏禹女士在前几天的CDNLIVE上表示:“未来五年内,云计算、边缘计算等都会撬动一个200亿美金的新兴市场。PC也会发生最大的变革,它将和手机在一起,形成个人智慧中心。这背后巨大的增长来自摩尔定律持续发展,在强大的市场下,整个产业都会聚焦推动摩尔动律往前发展。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭