当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:我国高校作为电能的主要耗用者之一,存在大量使用大功率设备、学生节电意识差等问题。对高校用电量进行预测可以为高校配电网的配电计划工作提供数据参考,达到调节电量输送、节约能源的目的。鉴于此,对厦门大学漳州校区58幢宿舍楼进行随机抽样调查,并对搜集的数据基于ARMA和LSTM方法建立时间序列预测模型,预测校园宿舍未来用电量,以实现提前预警,提高大学生节电意识。实验证明,模型能够在大多数数据集上取得良好的性能表现。

引言

科技的快速发展和新技术的出现使人们对电力有着持续性增长的需求,能源短缺问题也日益凸显。中国电力企业联合会于2021年底发布的《电力行业碳达峰碳中和发展路径研究》显示,电力行业正迎来重大机遇与挑战,对于电力数据的价值挖掘研究与应用已经成为未来发展的必然趋势,充分发挥电网基础设施的作用,提高资源配置能力是应对该现状的有效方式之一。

当前,发电方式存在不稳定性,用电高峰期无法保证有效持续供电。部分地区电网网架结构薄弱、送电通道容量上限不高,供电量受限,未来一段时期我国部分地区电力供需紧张态势仍将持续。在高校中,供电需求量大,用电高峰期的电量峰值较其他区域高,供电压力大,对电力资源进行合理配置显得尤为重要。本文通过采集学生用电数据,对学生宿舍用电情况进行分析,建立模型对校园宿舍用电量进行学习和预测。预测未来几天内的用电需求,不仅能够给学生作为参考,也可对电力供需提供预警功能,保障宿舍电力供需平衡,加强高校的节电管理,从源头上减少能耗。

1模型理论

1.1时间序列

时间序列预测是根据历史时间序列数据建立模型的方法,被广泛应用于经济学、管理学、气象学等领域。对某一个或者一组变量X(t)进行观察测量,将在一系列时刻t1,t2,…,tn所得的离散数字组成的序列集合,称之为时间序列。时间序列预测方法首先考虑的是事物的趋势性,通过历史数据来预测事物的发展趋势;其次考虑的是事物的季节性,如气候条件、节假日等各种周期性因素,根据事物发展的季节性变化预测事物的周期变化;最后考虑随机因素的影响,不规则波动通常夹杂在时间序列之中,以致时间序列产生波浪式或振荡式变动。基于电量序列的特性以及数据量,本文基于自回归滑动平均模型(Auto-RegressiveandMovingAverageModel,ARMA)建立模型。ARMA模型是研究时间序列的常用方法,用于研究平稳随机过程有理谱,适用性很强。

1.2神经网络

神经网络作为机器学习方法之一,起源于人类对大脑的研究,是一种仿生的网络结构。通过大量简单的生物神经元之间的相互连接,来构造复杂的网络结构,以模拟生物神经网络的智能行为,从而克服传统算法处理智能信息的困难。基于长短期记忆人工神经网络(Long-shortTermMemory,LSTM)独特的设计结构,LSTM作为一种特殊的递归神经网络,不仅可以利用时间序列对输入进行分析,还不会像普通的递归神经网络忽略长时间前的有用信息,因此,本文根据电量序列的特性选择基于LSTM建立模型。

2模型建立与求解

2.1数据采集

本文以厦门大学漳州校区的学生作为调查对象,厦门大学漳州校区宿舍用电情况作为主要调查内容,采用问卷调查法和实地观察法两种数据采集方法。

2.1.1问卷调查法

本项目组前期通过查询相关资料制订了本次调查问卷,调查问卷设计分为三大部分:第一部分为被调查者基本情况,第二部分为被调查者对宿舍用电器的使用情况,第三部分为被调查者夏冬两季用电量及电费支出情况,总计包含12个问题。在本次调查中,共发出问卷168份,收回问卷168份,有效问卷154份,有效回收率为91.7%。对调查问卷的数据进行分析,总结了影响本校大学生宿舍用电量情况的因素,并对校园节电管理及大学生节电意识培养提出了相关意见和建议。

2.1.2实地观察法

本文以厦门大学漳州校区为例,对校园内各个园区共58幢宿舍楼采取随机抽样调查的方法,通过学校的电费网站采集了每个园区各一个宿舍从9月7日至12月7日的每日用电量。数据可视化如图1所示。

2.2影响因素分析

为了探究用电情况是否受性别影响,抽样统计不同宿舍楼同宿舍号的9、10、11和12月的用电量情况,结果如表1所示。

为了更直观地进行对比,基于表1数据绘制图2。

统计北区不同宿舍楼同宿舍号的9、10、11和12月的用电量,发现用电量情况是受性别影响的,从图2中可以看出,女生宿舍在9月一11月的平均用电量都明显高于男生宿舍。将该结论与168份调查问卷的结果对比来看,在耗电最多的电器中有14.29%的男生选择了日常电器这一选项,而选择这一选项的女生有29.39%。经过实地走访调查发现,女生宿舍备有电器的数量比男生来得多,并且功率也相对更大,可以推断出这是造成男女生宿舍用电量差异较为关键的部分。

2.3ARMA模型建立

ARMA的基本思想是把AR和MA模型结合起来,使得所用参数个数保持很少。模型形式为:

式中:{小i}为自回归系数:{9i}为移动平均系数:{yl}为时间序列:{gl}为白噪声序列:p和.为非负整数。

本文通过观察PACF、ACF截尾以及AIC、BIC准则来分别判断p和.的值,以进行模型定阶。

从预测日期开始,利用ARMA模型对不同园区宿舍电量进行预测,预测值作为新的样本加入预测模型,逐日增加样本量,计算预测值与实际值y的累计差异率s,公式为:

通过观察差异率变动趋势,对预测数据进行有效修正,最终确定选择ARMA)9,1)作为预测模型。

2.4LSTM模型建立

LSTM是一种特殊的RNN,可以学习到长期记忆信息,解决长时依赖问题,并且在反向传播求导时梯度几乎保持为常量,避免了梯度消失或爆炸,模型收敛速度更快。LSTM神经网络模型的循环单元内部包括三个结构:遗忘门、输入门和输出门。遗忘门决定了上一时刻的工作状态需要保留多少到当前时刻,可由tanh函数实现:输入门决定当前时刻网络输入哪些信息来更新长期记忆状态,该阀门筛选出有用信息喂入网络,可由sigmoid函数实现:最后一个是输出阀门,它置于网络的输出之后,用于控制单元状态,可以自动提取输出信息中的重要部分,它也由sigmoid函数实现。

LSTM网络的基本单元如图3所示,fl,il,ol分别为遗忘门、输入门、输出门:xl,gl,hl,Cl分别为l时刻的输入、输入节点、中间输出和细胞单元的状态:口、tanh分别为sigmoid和tanh函数变化。

本文先将数据转换为平稳数据,再将序列构造为一个有监督的学习问题,并把数据集以2:1的比例分成训练数据集和测试数据集。为了达到较好的训练效果,本文将batchsize设置为1000轮,以进行模型训练。

3实验结果与分析

本文以Yx园区宿舍的数据为例分别进行模型训练,将实际值与两种预测模型得到的预测值进行可视化,结果如图4所示。由图4可知两种模型预测效果都较为不错,走向与实际值大致相同。

为了更好地评价并对比模型效果,本文分别计算了LSTM的平均绝对值误差MAE与平均绝对值百分比误差MAPE,这两个指标都经常被用于时间序列分析中来评价衡量预测误差和准确性。

MAE公式为:

MAPE公式为:

结果如表2所示。

从结果可以看出,LSTM模型的MAE与MAPE均小于ARMA模型,所以LSTM模型略优于ARMA模型。

4结论

(1)本文通过不同的时间序列模型预测对照,得出LSTM模型的预测效果优于ARMA模型,机器学习相较传统的时间序列模型更加精准。

(2)本文通过对厦门大学漳州校区宿舍用电量进行调查,得出性别是影响宿舍用电量的重要因素之一,原因是女生总体使用电器更多。此外,电量可能也与气温有关。

(3)根据用电量情况的预测既可以合理规划各地区配电网,也能为宿舍用电预警提供实践依据,避免因忘缴电费引起停电,造成生活不便。

(4)时间序列模型还可用于动植物种群数量逐月或逐年的消长进程、某证券交易所每日收盘指数等等,还能够用在国民经济宏观操纵、区域综合进展计划、企业经营治理、市场潜量预测、气象预报、水文预报、地震预兆预报、农作物病虫灾害预报、环境污染操纵、生态平稳、天文学和海洋学等方面。

(5)神经网络模型预测具有一定的可行性及可靠性,电网公司可以根据研究资料与成果,基于事故在范围、时间等方面的信息,快速预估停电造成的影响,还可以结合已经掌握的信息快速制订解决方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭