当前位置:首页 > 技术学院 > 技术解析
[导读]为增进大家对人工智能的认识,本文将对人工智能以及人工智能面临的挑战予以介绍。

人工智能在现代生活中已经逐渐开始发挥作用,就目前而言,人工智能已经能够辅助代码开发。为增进大家对人工智能的认识,本文将对人工智能以及人工智能面临的挑战予以介绍。如果你的人工智能、AI具有兴趣,不妨继续往下阅读哦。

一、人工智能

人工智能是一种模拟人类思维的技术,它包括了机器学习、自然语言处理、专家系统等多种技术手段,通过这些手段来模拟人类的认知、学习和推理能力。通俗来讲:人工智能就是一种模仿人类能力的技术手段,比如我们常见的智能音箱,你说出一句话它能跟你回答,这其实就是人工智能的语音识别技术。人工智能可以实现自主决策、自主学习、自主优化和自主创新,能够帮助人类解决众多的实际问题,如图像识别、语音识别、自动驾驶、机器翻译等等,这些功能是我们生活中最常用的,可又是大多数人忽视的。

人工智能被大部分人熟知的原因可能是因为Chat GPT 的火热,很多人被Chat GPT 强大的功能所震撼,它不仅能写论文、像教授一样回答你的问题,甚至还能写代码。但其实Cha GPT只是人工智能的明星产品,并不能完全代表人工智能的所有技术种类。它应用的是人工智能的自然语音处理技术,是让计算机能够理解、解析、生成和操作自然语音的技术。

应用人工智能技术的行业还有非常多,包括但不限于交通(车辆查找违章监控)、互联网(语音识别、拍照识别)、医疗(CT扫描)、制造业(自动化)、物流(无人送货)、农业(自动采摘)、汽车(智能驾驶)人工智能能做的事越来越多了,在Chat GPT引爆人工智能热点以后,现在又出现了具身智能,也就是人形机器人,似乎人工智能超越或取代人类的脚步越来越近了,以至于有论点认为人工智能会取代很多人的工作岗位,这并不是危言耸听。

二、人工智能挑战

在产业落地过程中,人工智能技术与企业需求之间的鸿沟不容忽视。企业用户的核心目标是利用人工智能技术实现业务增长,而人工智能技术本身无法直接解决业务需求,需要根据具体的业务场景和目标,形成可规模化落地的产品和服务。在这个过程中,人工智能在数据、算法、业务场景理解、服务方式、投入产出比等方面都面临一系列挑战。

1.数据AI领域,数据是基础要素。与数据相关的流程主要包括:数据获取、数据治理以及数据标注。

2.算法模型可解释性所谓“可解释性”指的是向技术使用者等解释人工智能模型做出的每一个决策背后的逻辑。从传统模型到新型算法,AI的复杂性逐步递增,促使人工智能算法的决策机制越发难以被人类理解与描述。很多人将大部分基于深度学习的算法想象成是一个“黑盒子”,也就是说认为模型不具备可解释性。相比较“黑盒子”而言,可解释性的AI对于深度神经网络的透明性有所增加,有助于向用户提供判断依据等信息,增强用户对人工智能的信任与安全感,同时也为事后监管、责任归属等环节提供有力依据。

3.业务场景的理解随着人工智能的行业化发展,待解决的业务问题从通用型场景向特定型场景过渡,单点问题向业务整个流程演进,从感知化到认知化的发展,业务场景的壁垒与复杂度越来越高。在这样的背景下,仅仅依靠算法技术的积累,难以满足对场景的理解要求。所以,AI算法需要经验与业务规则的结合。这种情况下,知识图谱技术成为关键所在。

通过知识图谱,可以更好地理解业务。通过建立统一的图谱来实现知识的融合,进一步加快推进人工智能的落地。

4.服务方式对于企业业务人员的根本需求,标准化的人工智能技术输出或者API调用的服务方式是不够的。厂商需要根据具体场景,在技术基础上提供定制化的解决方案,并封装为应用到业务系统中的产品,即“AI+产品”。另外,厂商需要提供持续性的业务运行服务,才可让AI产品真正发挥价值,以保证达到最终业务效果,即“AI+服务”。

5.投入产出比对于企业来说,在业务中落地AI技术应用,至少包括两个层面的成本:(1)芯片、算法平台等智能化产品;(2)引进算法工程师等人工智能方面人才。

目前,一些数据平台、机器学习平台的涌现,提高了人工智能建模的自动化程度,同时也降低了整个业务流程对算法工程师的依赖,AI应用的总成本有待降低。此外,未来算法的进步可降低硬件标准,也可促使成本的节省。

以上便是此次带来的人工智能相关内容,通过本文,希望大家对人工智能已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭