当前位置:首页 > 模拟 > 模拟技术
[导读]电阻屏和电容屏的区别在原理、抗损能力、像素精度等方面

电阻屏和电容屏的区别在原理、抗损能力、像素精度等方面

原理

电容屏是利用人体的电流感应工作,电阻屏是通过压力传感工作

抗损能力

电容屏的最外层是矽土玻璃保护层,在严重冲击下有可能碎裂,电阻屏的最外层是薄膜,屏幕易产生划痕,但较电容屏而言不易摔坏。

像素精度

电容屏在理论上可以达到几个像素,而电阻屏的精度至少达到单个显示像素。

电阻式触摸屏是一种传感器,基本上为薄膜加上玻璃的结构,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。电阻式触摸屏是一种传感器,基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂有ITO涂层,ITO具有很好的导电性和透明性。

电容式触摸屏技术是利用人体的电流感应进行工作的。当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。

ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用溅射、蒸发等多种方法镀上一层氧化铟锡膜加工制作成的。而ITO薄膜是一种n型半导体材料,具有高的导电率、高的可见光透过率、高的机械硬度和良好的化学稳定性。

不管在MCU是否具有传感器/控制器电路集成在芯片上,或者如果触摸传感器信息是在一个专用设备,MCU必须处理,以达到令人满意的用户体验的若干由电容触摸输入创建的问题。这些包括延迟(用于用户及时响应),准确性及能源消耗。能耗是特别重要的电池供电设备。

MCU供应商都提供了各种各样的电容式触摸解决方案,从专用外设与电容式触摸传感器的电池供电应用的超低功耗接口。在回顾的解决方案,然而,电容式触摸技术快速审查应该是有帮助的。

电容式触摸基础知识

一般目前特殊设计的问题和电容式触摸传感器传感器并没有什么不同。多的复杂性是由于这样的事实,即传感器的电场的分布特性使它们的行为“集总元件”近似不准确和误导。为了解决这些问题,半导体公司已经出版了许多应用笔记,基本上提供规则 - 如果遵循 - 将导致一个成功的设计。本文将针对基本的考虑;了解一些基础知识是必不可少的得到正确的方向开始的设计。

电容式触摸传感器都可以使用简单的空间参数进行大致分类:

零维传感器单点联系的回应。一个简单的按钮是最常见的实现。

一维传感器可以检测手指的移动沿单一,线性轴。滑块和滑轮是最流行的实现。

二维传感器可以检测手指的运动沿两个轴。触摸屏和触摸板都是很好的例子。

该技术是复杂得多,但是,一如既往,在设计最终用户系统中的第一个重要步骤是选择对应于应用程序的传感器类型。

最基本的电容式触控技术,一维和二维传感器依赖于表面电容。所述面板的一侧被涂覆有导电材料,而另一侧是绝缘材料。一个小的电压被施加到导电层以创建弱电场。当导电手指或触笔触摸表面,电容器瞬间产生,这改变了电场。

该传感器的控制器可以间接通过测量从四个角面板的电容的变化计算触摸的位置。的电容变化较大,越接近触摸是那个角落。表面电容技术具有相当分辨率低且受引起的电容耦合的误差。由于这些原因,它通常用于工业控制和亭。

投射电容式触摸

投射电容式触摸(PCT)技术更准确,灵活的比使用表面电容。该导电层被蚀刻在X-Y栅格。有两种类型的PCT传感器技术:自电容和互电容。

在自电容感测,在XY网格的行和列独立操作。位置由一个手指上的每个列或行的容性负载的相对位置来确定。创建一个强信号,但自电容感测不能准确地解析多于一个手指,这可能会导致“鬼影”或放错位置的位置感测。

互电容式传感器具有一个电容器在每行和每列的交叉点。当将电压施加到行或列,甚至使手指或导电触针的传感器的表面附近改变局部电场,降低了互电容。触摸位置可以非常精确地通过测量电容变化在网格上的每个单独的点来确定。互电容支持多点触控操作,这意味着,多个手指的位置可以准确地跟踪在同一时间。

PCT是销售点的需要,记录签名能力的设备一个受欢迎的传感选项。然而,PCT性能可以负面在面板表面导电污迹的影响。尘埃附着在面板也可以是一个问题。

MCU供应商设计产品系列正是为了处理传感器的刚刚讨论的类型。爱特梅尔,例如,开发的传感器控制器系列的按钮,滑块和滑轮。该产品可作为无论是IP集成在Atmel的AVR或使用该公司的QTouch软件库Atmel基于ARM的MCU内核的一个或作为特定应用的设备。 QTouch软件家族用于与自电容传感器的设计。其QMatrix感应控制器用于与互电容传感器。爱特梅尔使得可举家评估板。

德州仪器MSP430超值系列G2xx2 / 3 MCU的某些配置是专为电容式触摸应用而设计的。这些MCU包括电容式触摸感应IO的,使开发人员能够使用,无需外部元件电容触摸板直接连接。对于更复杂的应用,公司的MSP430F51x2设备,如MSP430F5152IDAR,包括,提供4纳秒的分辨率,它能使高精度触摸感测了高性能的计时器。

许多IC公司具有电容式触摸产品线。它们包括但不限于爱特梅尔,Cypress半导体公司,飞思卡尔半导体,Microchip的技术,恩智浦半导体,Silicon Labs公司和德州仪器。

设计注意事项

电容式触摸应用程序要求设计师要考虑的不仅仅是MCU。功率消耗是重要的,电池供电的设计,并经过多按钮被按下的时刻,并从系统的反应之间(等待时间)的时间也是非常重要的。

其他因素也必须在光应用程序的情况下使用的考虑。这包括环境光线的灵敏度(屏幕眩光),成本,耐久性和最小/最大尺寸。所有这些标准的探索已经超出了本文的范围,但是2014年的分析由明尼苏达州立大学出版的论文集ASEE(ASSE-NWMSC2014-1C1)包括一个表(图1),应该是设计师的帮助。电阻式触摸技术也被包括在分析中,因为它仍然是在广泛使用,虽然一般不作为能够作为电容性触摸。这些技术都排的规模为0至5,用5是“最好的”和0是“最差”的表现。 PCT拥有最好的收视率,但整体表面电容技术,应考虑对成本敏感的应用和产品,更大的屏幕。

电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。由于电容随温度、湿度或接地情况的不同而变化,故其稳定性较差,往往会产生漂移现象。

电阻式触摸屏是一种传感器,基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂有ITO(纳米铟锡金属氧化物)涂层,ITO具有很好的导电性和透明性。当触摸操作时,薄膜下层的ITO会接触到玻璃上层的ITO,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X、Y值,而完成点选的动作,并呈现在屏幕上。

工作原理:

电容技术触摸屏CTP(Capacity Touch Panel)是利用人体的电流感应进行工作的。电容屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),最外层是只有0.0015mm厚的矽土玻璃保护层,夹层ITO涂层作工作面,四个角引出四个电极,内层ITO为屏层以保证工作环境。

电阻触摸屏的工作原理主要是通过压力感应原理来实现对屏幕内容的操作和控制的,这种触摸屏屏体部分是一块与显示器表面非常配合的多层复合薄膜,其中第一层为玻璃或有机玻璃底层,第二层为隔层,第三层为多元树脂表层,表面还涂有一层透明的导电层,上面再盖有一层外表面经硬化处理、光滑防刮的塑料层。

通俗来说电容式触摸屏就是支持多点触摸的人机交互方式,普通电阻式触摸屏只能进行单一点的触控。

例如:Apple iphone,Nokia N8,Nokia E7为电容式触摸屏,可以用双手同时接触屏幕进行操作,网页图片浏览放大等操作

Nokia 5800 ,n97 ;HTC d600 s90,5230等就为电阻式触摸屏,只能单点操作。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态

关键字: 复位电路 电容 电源

电动机作为现代工业与生活的重要动力源,广泛应用于各个领域。然而,在电动机的运行过程中,电容烧毁的问题时常发生,给生产和生活带来诸多不便。那么,电动机为何偏爱“烧电容”呢?本文将从电容的作用、烧毁原因以及预防措施等方面进行...

关键字: 电动机 电容

在这篇文章中,小编将为大家带来电容的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 电容 去耦 滤波

电容,作为电子学中的一个基本概念和关键元件,广泛应用于各种电路和设备中。它的主要功能是储存电荷并在电路中起到滤波、耦合、调谐等作用。那么,电容的工作原理是什么呢?本文将从电容的基本结构、电荷储存机制、电场作用以及实际应用...

关键字: 电容 滤波 电子学

在复位电路中,电容的作用是给系统提供恒定的电源电压,从而保证开机时系统能够正确地执行初始化和自检过程。因此,选择合适大小的电容对于系统的稳定性和性能至关重要。

关键字: 复位电路 电容 系统

美国威世(Vishay)是世界知名综合性分立式电子元件大厂,其中Vishay的高压陶瓷电容和日本村田高压电容,享有盛名。

关键字: Vishay 电容

电容式触摸屏又称电容触摸屏,是一种生长在电子行业中的新型非接触式触摸技术,广泛应用在人机交互界面,实现与人机之间信息传递,它带动了科技发展,改变着日常生活。

关键字: 电容式 触摸屏 交互界面

在这篇文章中,小编将对电容测量的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 万用表 电容

本文中,小编将对电容予以介绍,如果你想对它的详细情况有所认识,或者想要增进对电容的了解程度,不妨请看以下内容哦。

关键字: 电容 电容器 电路
关闭