当前位置:首页 > 智能硬件 > 智能硬件
[导读]在这篇文章中,小编将为大家带来FPGA的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

在这篇文章中,小编将为大家带来FPGA的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

一、FPGA

从本质上讲,FPGA(Field-Programmable Gate Array,可编程门阵列)是一种半导体设备,由可配置的逻辑块和互连组成,可以编程实现各种数字电路。

FPGA常常与专用集成电路(ASIC)和微控制器进行比较。ASIC专门为特定任务定制,提供了优化的性能,但缺乏灵活性。另一方面,微控制器是通用设备,通常用于较简单的任务,并通过软件控制。

FPGA的优势在于其在保持高性能的同时适应各种任务的能力。FPGA可以动态重新配置,非常适合需要灵活性和快速开发周期的应用。

FPGA主要由以下部分组成:

1、逻辑块

逻辑块是FPGA的基本构建块,包含可编程逻辑元素,可以配置为执行各种数字功能,如与、或和异或门。这些逻辑块可以通过编程来定义其功能和连接方式,从而实现所需的数字电路。

逻辑块的可编程性是FPGA的特点之一,这使FPGA具备了高度的灵活性和可定制性。

2、互连

互连是将逻辑块连接在一起的"线路"。它们构成可编程的路由矩阵,允许不同的逻辑块之间进行灵活的连接,并最终定义FPGA的功能。

3、输入/输出块

输入/输出(I/O)块使FPGA能够与外部设备(如传感器、开关或其他集成电路)进行通信。它们可配置以支持各种电压级别、标准和协议。

4、配置存储器

配置存储器存储定义FPGA的逻辑块和互连如何配置的编程数据。当FPGA上电时,这些数据被加载到设备中,使其能够执行其预定功能。

二、FPGA为什么比CPUGPU快,原因是什么?

CPU和GPU都属于冯·诺依曼结构,指令译码执行,共享内存。FPGA之所以比CPU、GPU更快,本质上是因为其无指令,无共享内存的体系结构所决定的。

冯氏结构中,由于执行单元可能执行任意指令,就需要有指令存储器、译码器、各种指令的运算器、分支跳转处理逻辑。而FPGA的每个逻辑单元的功能在重编程时就已经确定,不需要指令。

冯氏结构中使用内存有两种作用:①保存状态。②执行单元间的通信。

1)保存状态:FPGA中的寄存器和片上内存(BRAM)是属于各自的控制逻辑的,无需不必要的仲裁和缓存。

2)通信需求:FPGA每个逻辑单元与周围逻辑单元的连接在重编程时就已经确定了,并不需要通过共享内存来通信。

计算密集型任务中:

在数据中心,FPGA相比GPU的核心优势在于延迟。FPGA为什么比GPU的延迟低很多?本质上是体系结构的区别。FPGA同时拥有流水线并行和数据并行,而GPU几乎只有数据并行(流水线深度受限)。

处理一个数据包有10个步骤,FPGA可以搭建一个10级流水线,流水线的不同级在处理不同的数据包,每个数据包流经10级之后处理完成。每个处理完成的数据包可以马上输出。而GPU的数据并行方法是做10个计算单元,每个计算单元也在处理不同的数据包,但是所有的计算单元必须按照统一的步调,做相同的事情(SIMD)。这就要求10个数据包必须同进同出。当任务是逐个而非成批到达的时候,流水线并行比数据并行可实现更低的延迟。因此对流水式计算的任务,FPGA比GPU天生有延迟方面的优势。

ASIC在吞吐量、延迟、功耗单个方面都是最优秀的。但是其研发成本高,周期长。FPGA的灵活性可以保护资产。数据中心是租给不同租户使用的。有的机器上有神经网络加速卡,有的有bing搜索加速卡,有的有网络虚拟加速卡,任务的调度和运维会很麻烦。使用FPGA可以保持数据中心的同构性。

通信密集型任务中,FPGA相比GPU、CPU的优势更大。

①吞吐量:FPGA可以直接接上40Gbps或者100Gbps的网线,以线速处理任意大小的数据包;而CPU则需要网卡把数据包接收过来;GPU也可以高性能处理数据包,但GPU没有网口,同样需要网卡,这样吞吐量受到网卡和(或)者CPU的限制。

②延迟:网卡把数据传给CPU,CPU处理后传给网卡,再加上系统中的时钟中断和任务调度增加了延迟的不稳定性。

综上所述,在数据中心里 FPGA 的主要优势是稳定又极低的延迟,适用于流式的计算密集型任务和通信密集型任务。

上述所有信息便是小编这次为大家推荐的有关FPGA的内容,希望大家能够喜欢,想了解更多有关它的信息或者其它内容,请关注我们网站哦。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭