当前位置:首页 > 模拟 > 模拟技术
[导读]以下内容中,小编将对非放电型RCD缓冲电路的设计的相关内容进行着重介绍和阐述,希望本文能帮您增进对缓冲电路设计的了解,和小编一起来看看吧。

以下内容中,小编将对非放电型RCD缓冲电路的设计的相关内容进行着重介绍和阐述,希望本文能帮您增进对缓冲电路设计的了解,和小编一起来看看吧。

一、缓冲电路

缓冲电路(Snubber Circuit)又称吸收电路,它是电力电子器件的一种重要的保护电路,不仅用于半控型器件的保护,而且在全控型器件(如GTR、GTO、功率MOSFET和IGBT等)的应用技术中,起着更重要的作用。

缓冲电路的功能有抑制和吸收两个方面,因此下图(a)是这种电路的基本结构,串联的LS用于抑制di/dt的过量,并联的CS用于吸收器件上的过电压,即器件在关断时CS通过快速二极管DS充电,吸收器件上出现的过电压能量,由于电容电压不会跃变,限制了重加dv/dt。当器件开通时CS上的能量经RS泄放。对于工作频率较高、容量较小的装置,为了减小损耗,下图(a)中的RLCD电路,可以简化为下图(b)的形式。装置由RCD网络构成的缓冲电路普遍用于GTR、GTO、功率MOSFET及IGBT等电力电子器件的保护。

二、非放电型RCD缓冲电路的设计

与放电型RCD缓冲电路不同,非放电型RCD缓冲电路的RSNB消耗的功率仅为浪涌能量,因此RSNB的容许损耗可以较小。这可以扩大RSNB的选择范围,使得能够增加CSNB的电容量,因而可以提高钳位的效果。

CSNB由“C缓冲电路的设计”中的公式(2)决定,RSNB由“RC缓冲电路的设计”中的公式(3)决定。但是,RSNB的功耗由下面给出的公式(6)决定。由于“RC缓冲电路的设计”的公式(4)中不存在包含CSNB和fSW的二项式,所以基本上不会有因CSNB和fSW导致的功耗增加情况。因此,可以将CSNB的电容值设置得大一些,从而可以实现钳位效果更好的缓冲电路;另外,还支持提高fSW的频率。

图1是非放电型RCD缓冲电路工作后的放电路径。上桥臂的浪涌电流流向PGND,下桥臂的放电电流经由RSNB流向HVdc,因此受布线电感的影响较小。另一方面,由于电流变化很大,因此在MOSFET漏极和源极之间的布线电感LSNB需要尽可能小。

非放电型RCD缓冲电路如何设计?看大佬怎么做的!

图1. 非放电型RCD缓冲电路的放电

图2是通过评估板P02SCT3040KR-EVK-001验证使用了SiC MOSFETSCT3080KR的非放电型RCD缓冲电路效果的波形。(a)是测试电路,(b)是有和没有缓冲电路时的测试波形。该波形是RG_EXT=3.3Ω、HVdc=800V、漏极电流ID约为70A时的关断波形。

当不连接缓冲电路时,关断时会产生1210V的浪涌;当增加了缓冲电路后,浪涌变为1069V,降低了约12%。另外,缓冲电路还消除了伴随浪涌产生的电压振铃,因此可以大大降低EMI。

非放电型RCD缓冲电路如何设计?看大佬怎么做的!

图2. 关断浪涌测量(有/无缓冲电路)

图3是在降压型转换器(Buck Converter)中的转换效率比较图。这是输入电压=400V、输出电压=200V、RG_EXT=6.8Ω、开关频率fSW=100kHz时的效率。

非放电型RCD缓冲电路如何设计?看大佬怎么做的!

图3. Buck 电路的效率

当使负载功率从1kW变化至4.8kW时,在约4kW以下,没有缓冲电路时的效率比有缓冲电路时最大高0.4%;在4kW以上,有缓冲电路时的效率比没有缓冲电路时高0.15%。这是因为,随着负载功率的增大,浪涌引起的功率损耗(谐振电流引起的电容器等的等效串联电阻的损耗)也会增加,利用缓冲电路来抑制浪涌,最终会使开关损耗降低。

最后,小编诚心感谢大家的阅读。你们的每一次阅读,对小编来说都是莫大的鼓励和鼓舞。最后的最后,祝大家有个精彩的一天。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭