当前位置:首页 > 模拟 > 模拟技术
[导读]在这篇文章中,小编将为大家带来ADC模数转换器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

在这篇文章中,小编将为大家带来ADC模数转换器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

一、ADC模数转换器分类

1、积分型

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

2、逐次比较型

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。

ADC模数转换器有哪些种类?ADC模数转换器设计!

3、并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器。

ADC模数转换器有哪些种类?ADC模数转换器设计!

4、串并行比较型

Half flash(半快速)型:是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换。

ADC模数转换器有哪些种类?ADC模数转换器设计!

三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

5、Σ-Δ调制型

Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。

6、压频变换型

压频变换型是通过间接转换方式实现模数转换的。将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。

二、ADC模数转换器电路设计

我们先来看一下电路设计:

我们可以看到,电源输出VIN通过R6和R5两个分压电阻,将其线性的降压到ADC1_CH0电路中,并接到PA0引脚上。可以计算得到以下内容:

我们通过了这个两个电阻分压的线性降压电路将11.1v到12.6v的电压降低到2.868v到3.256v。为什么这个做呢?原因是STM32的AD转换引脚能够接受的模拟电压范围为的最大值是3v。当我们通过STM32的ADC采集将降压后的电源转为数字信号,再通过程序还原成原始的电压数值,我们就可以得到电源电压了。假设ADC采集到的电压为v,于是我们可以得到电源电压V的值的计算方法为:

接下来,我们来编写STM32程序,通过ADC采集到我们的电源电压:

ADC模数转换器有哪些种类?ADC模数转换器设计!

这样我们就完成了ADC1的CH0的配置工作。之后我们还需要编写一个函数用于读取ADC1中CH0的数字信号值:

ADC模数转换器有哪些种类?ADC模数转换器设计!

最后,我们通过在main函数中对ADC1中的CH0进行配置,并在主循环中读取电源电压信息:

ADC模数转换器有哪些种类?ADC模数转换器设计!

当我们通过调用adc_get(0)函数得到采集电压v之后,再通过uart_write(v)函数将电压值发送到串口当中方便我们观察。读者只需要了解得到电压v之后如何计算出电源电压即可。例如我们从串口中得到的数据如下:

实际上,我们得到了很多组数据,它们之间会存在一些小的差别,但并不很大。

我们,可以在电源电压接近11v时再进行一次采集和计算,我们采集到的数据为50 DF:

通过上述方法计算得到电源电压为:

16进制转10进制: 0xDF50 = 57168

除以16通道分辨率: 57168 / 65535 = 0.872327764

乘以电路中分压值3.256v: 0.872327764 × 3.256 = 2.840299199

转为实际电源电压: 2.840299199 × 387 ÷ 100 = 10.992

最后,我们就得到了电源电压为10.992v约等于11v

于是,我们通过程序来计算上面的内容:

这样我们就完成了通过STM32采集电源的电压,方便我们以后实时查看小车的电源情况。

以上便是此次的全部内容,经由小编的介绍,不知道你对ADC模数转换器是否充满了兴趣?如果你想对它有更多的了解,不妨尝试在我们的网站里进行搜索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

工业自动化、医疗电子及精密测试领域,微弱信号的精准采集与处理是系统性能的核心挑战。以24位Σ-Δ ADC为核心的高精度数据转换系统,结合激光修调电阻阵列的微弱信号调节器,通过动态元件匹配(DEM)技术与激光微纳加工工艺的...

关键字: ADC 动态元件匹配

2025年7月8日,致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下品佳推出基于微芯科技(Microchip)dsPIC33CK256MP506主控MCU的3.3KW双向图腾柱PFC逆变电源方案...

关键字: 电源 MCU ADC

纳祥科技在原来的基础上更新了一款高性能音频I2S 114DB ADC,它能够以高达192kHz的采样率,执行立体声模拟到数字转换,最高支持24位串行值,并具备114dB动态范围,-100dB THD+N,功能可覆盖CS5...

关键字: 纳祥科技 ADC 国产芯片

最新 DSC 器件配备专用外设,适用于数据中心电源及其他复杂实时系统

关键字: PWM 分辨率 ADC 数字信号控制器

在现代电子测量系统中,传感器与模数转换器(ADC)扮演着极为关键的角色。传感器负责将各类物理量精准转换为电信号,而 ADC 则承担着把模拟信号转换为便于后续处理的数字信号的重任。在这一过程中,传感器输出的噪声以及 ADC...

关键字: 传感器 模数转换器 电信号

在现代电子测量系统中,传感器负责将物理量转换为电信号,而模数转换器(ADC)则将模拟信号转换为数字信号以便后续处理。传感器输出的噪声以及 ADC 的分辨率是影响系统测量精度的关键因素,其中传感器输出最大噪声与 ADC 最...

关键字: 传感器 模数转换器 分辨率

在电子系统设计中,模数转换器(ADC)的前端输入配置是至关重要的环节,它直接关系到信号采集的精度、稳定性和可靠性。ADC前端输入配置的选择不仅需要考虑信号的特性、系统的需求,还需要兼顾成本、功耗以及实现的复杂度。

关键字: ADC 电源

便携式血糖仪作为糖尿病管理的核心工具,其信号链性能直接影响检测精度与用户体验。随着超小型ADC(模数转换器)技术的突破,通过优化信号链设计可显著提升血糖仪的灵敏度、功耗与集成度。本文以凌力尔特(Linear Techno...

关键字: ADC 便携式血糖仪

一个没有活动部件的秤——你说不可能?根据我目前项目的结果,它拥有令人难以置信的分辨率和准确性。从一个铝制长方体的弯曲到眼睛难以察觉的弯曲,一个24位模数转换器(ADC),一个ESP8266或ESP32(缩写为以下文本ES...

关键字: 数字秤 ESP32 OLED显示器 模数转换器

在工业自动化领域,工业信号调节器作为核心硬件设备,承担着信号采集、转换、传输与隔离的关键任务。其硬件设计需兼顾信号精度、抗干扰能力、实时性与安全性,尤其需重点优化信号调理电路、模数/数模转换(ADC/DAC)模块以及隔离...

关键字: ADC DAC 隔离模块
关闭