当前位置:首页 > 模拟 > 模拟技术
[导读]两端电压指的是电容一边相对另一边的电压,我们知道电压本身就是个参考值(一般认定参考GND,认定GND点平为0V)。

自举电容的核心原理是:电容两端电压不能突变。

从这句话中,我们可以获取到两个关键字:两端电压、不能突变。

两端电压指的是电容一边相对另一边的电压,我们知道电压本身就是个参考值(一般认定参考GND,认定GND点平为0V)。

不能突变则指电容两端电压变化时,必然需要1个大于0s的时间。根据电容的公式I=C*dU/dt,得知,dU/dt=I/C,故电容两端电压从0升到VDD时,取决于电流和电容的比值。容值一定时,电流越大,电压上升的越快。电流一定时,容值越小,电压上升的越快。

简单的自举电容模型?

假如,只有个6V的电源,但是我们想输出12V的电压,相对简单的方法就是应用自举电路,如下图中的电路,(认为器件均为理想模型),二极管D1和电容C1就构建了自举电路。


最全的自举电路经典应用

1.A状态为默认状态,此时开关A闭合,开关B断开,Q1导通,C1负极与地导通,电流从电源VDD出发,通过D1,经过C1,经过Q1,再流回电源VDD。达到稳态后,电容上端对地电压为6V,下端对地电压为0V。

2.当开关B闭合,开关A断开,Q1截止,电容下端电压与电源正极直连,此时电容下端对地电压等于电源正极对地电压,为6V。由于电容两端电压不能突变,电容上端相对电容下端,电压为6V,电容下端相对地,电压为6V。所以电容下端相对地,电压成了12V。由于D1的反向截止作用,使得电容上端对地电压可以保持在12V。

实际的模型中,由于反向二极管和MOS管均存在微弱的漏电,自举电路需要不断切换状态来对自举电容充放电,来保证电压被长时间抬起来。且自举电路的供电能力取决于自举电容的大小。

自举电路的经典应用

在很多Buck或者Boost电源芯片的手册中,我们都能看到自举电容的应用。我们打开TI厂家的BQ25895充电芯片(内含Buck)的器件手册,如下,红色框框中47nF电容即为自举电容。


最全的自举电路经典应用

继续往后看,打开BQ25895的内部框图,就可以看到芯片内部的自举电路设计。如图中,假设VBUS为5V,VREGN为电源输出,输出电压小于5V,Q2和Q3导通条件为VGS > 4V。

首先你要明白,高电压很容易产生低电压(比如电阻分压),但是低电压产生高电压就需要额外的措施。所以下图中,5V的VBUS输入可以很容易产生低于5V的VREGN输出。

那么在下图中,我们可以看到,对于Q3而言,S极接地,G极电压直接由VREGN驱动,VREGN可以轻易产生小于5V的电压在Q3的G极和S极,所以Q3很容易导通。

而对于Q2而言,由于S极未接地,若要保证Q2导通,则要求Q2的G极电压必须比S极电压高4V,才能满足Q2 VGS>4V的条件。若S极电压为0V,VREGN可以轻松导通。若S极为5V,则G极电压必须为9V,而VREGN最大不超过5V,怎么办呢?


最全的自举电路经典应用

自举电路的作用就彰显出来了。

还是如上图,首先VREGN产生小于5V的电压,让Q3导通,同时VREGN通过二极管D,自举电容C,以及导通的Q2构成对地回路,电容C开始充电,充电完成后,电容两端电压几乎等于VREGN(忽略二极管D的导通压降),由于电容C并联在Q2的G极和S极上,对于Q2来讲,VGS两端电压同样可以达到VREGN,从而使得Q2可以导通。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭