当前位置:首页 > 模拟 > 模拟技术
[导读]自举电路是一种利用电容器的储能特性来提升电路中某一点的电压,从而实现高增益或高输入阻抗的电路技术。

自举电路是一种利用电容器的储能特性来提升电路中某一点的电压,从而实现高增益或高输入阻抗的电路技术。自举电路在放大电路中有着重要的作用,尤其是在需要高输入阻抗和高电压增益的应用中。以下是对自举电路及其在放大电路中作用的详尽分析。

自举电路通过使用电容器在电源电压和电路工作电压之间创建一个虚拟的增益级,从而在没有实际增益元件的情况下提升电路的输入电压。这种技术可以有效地增加放大器的输入阻抗,同时减少所需的直流电源电压。

自举电路的工作原理基于电容器在交流信号中的行为。在直流条件下,电容器表现为开路,而在交流条件下,电容器可以充电和放电,表现出低阻抗的特性。自举电路利用这一特性,在交流信号作用下,通过电容器将一部分能量存储起来,并在需要时释放,以提升电路的某一点电压。

1.提高输入阻抗 :自举电路可以显著提高放大电路的输入阻抗,这对于与高阻抗信号源的接口非常重要,可以减少信号源的负载效应。

2.增加电压增益 :通过自举技术,放大电路可以在不增加电源电压的情况下,实现较高的电压增益。

3.改善稳定性 :自举电路可以减少放大电路的稳定性问题,因为它减少了电路对电源电压变化的敏感性。

4.减少电源需求 :自举电路允许使用较低的电源电压实现高电压增益,从而降低了对电源的要求。

5.信号调理 :自举电路常用于信号调理,如提升信号电平,以满足后续电路的输入要求。

1.电容选择 :自举电容的选择需要考虑其在交流信号频率下的充放电速率,以及其对电路总体性能的影响。

2.稳定性分析 :设计自举电路时,需要进行稳定性分析,确保电路在整个工作频率范围内都能稳定工作。

3.电源管理 :自举电路可能会对电源造成额外的负载,设计时需要考虑电源的稳定性和管理。

4.信号频率 :自举电路的效率和性能与信号频率有关,设计时需要考虑信号的频率范围。

5.电路布局 :电路布局对自举电路的性能至关重要,需要考虑布线、接地和屏蔽等因素。

1.运算放大器 :在运算放大器电路中,自举电路可以用于提高增益和输入阻抗。

2.传感器信号调理 :在传感器信号调理电路中,自举电路可以用于提升微弱信号的电平。

3.射频放大器 :在射频放大器中,自举电路可以用于实现高增益和高阻抗的匹配。

4.电源管理 :在电源管理电路中,自举电路可以用于提升电压,以满足特定电路的电源需求。

自举电路是一种有效的电路技术,可以在不增加电源电压的情况下提高放大电路的输入阻抗和电压增益。它在运算放大器、传感器信号调理、射频放大器和电源管理等领域有着广泛的应用。

自举电路也有一些局限性,有些应用如电机驱动的电机长期工作在低转速大电流场合,下管的开通占空比一直比较小,造成上管的自举充电不够,这种情况需要在PWM算法上做特定占空比补偿或者独立电源供应。在一些低成本的应用中,特别是对于一些600V小功率的IGBT,业界总是尝试把驱动级成本降到最低。因而自举式电源成为一种广泛的给高压栅极驱动(HVIC)电路供电的方法,原因是电路简单并且成本低。

自举电路的工作原理

如下图自举电路仅仅需要一个15~18V的电源来给逆变器的驱动级提供能量,所有半桥底部IGBT都与这个电源直接相连,半桥上部IGBT的驱动器通过电阻Rboot和二极管VF连接到电源Vb上,每个驱动器都有一个电容Cboot来缓冲电压;

当下管S2开通使Vs降低到电源电压Vcc以下时,Vcc通过自举二极管和自举电阻Rboot对自举电容Cboot进行充电,在自举电容两端产生Vbs悬浮电压,支持HO相对Vs的开关。随着上管S1开关,Vs高压时自举二极管处于反偏,Vbs和电源Vcc被隔离开。

自举电容的选取

当下管S2导通,Vs电压低于电源电压(Vcc)时自举电容(Cboot)每次都被充电。自举电容仅当高端开关S1导通的时候放电。自举电容给高端电路提供电源(VBS)。首先要考虑的参数是高端开关处于导通时,自举电容的最大电压降。允许的最大电压降(Vbs)取决于要保持的最小栅极驱动电压。如果VGSMIN最小的栅-源极电压,电容的电压降必须是:

其中:

Vcc=驱动芯片的电源电压;

VF=自举二极管正向压降;

Vrboot=自举电阻两端的压降;

Vcesat=下管S2的导通压降

计算自举电容为:

其中:

QTOT是电容器的电荷总量。

自举电容的电荷总量通过等式4计算:


自举电路中自举电容的选取

下表是以IR2106+IKP15N65H5(18A@ 125°C)为例子计算自举电容推荐。推荐电容值必须根据使用的器件和应用条件来选择。如果电容过小,自举电容在上管开通时下降纹波过大,降低电容的使用寿命,开关管损耗变高,开关可靠性也变低;如果电容值过大,自举电容的充电时间减少,低端导通时间可能不足以使电容达到自举电压。

选择自举电阻

自举电阻的作用主要是防止首次对自举电容充电时电流太大的限流,英飞凌的驱动芯片一般已经把自举二极管和电阻内置,不需要额外考虑电阻的选取。这里只是给大家分析原理,当使用外部自举电阻时,电阻RBOOT带来一个额外的电压降:

自举电路中自举电容的选取

其中:

ICHARGE=自举电容的充电电流;

RBOOT=自举电阻;

tCHARGE=自举电容的充电时间(下管导通时间)

该电阻值(一般5~15Ω)不能太大,否则会增加VBS时间常数。当计算最大允许的电压降(VBOOT )时,必须考虑自举二极管的电压降。如果该电压降太大或电路不能提供足够的充电时间,我们可以使用一个快速恢复或超快恢复二极管。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

自举电路(Bootstrap Circuit)是一种在电子电路中广泛应用的升压技术,其核心作用是通过电路自身的工作状态提升某个节点的电压,而无需增加外部电源电压。

关键字: 自举电路 电压

在电子电路中,电容器是一种重要的元件,其功能是储存和释放电能。在众多类型的电容器中,固态电容和普通电容是两种常见的选择。虽然它们在功能上有很多相似之处,但它们的构造、性能和应用领域却存在显著差异。

关键字: 电容器 电容

在现代社会,电力系统如同支撑经济社会运行的 “主动脉”,其安全稳定运行至关重要。高压并联电容器作为电力系统中的关键设备,对维持电力系统的高效运行发挥着不可或缺的作用。

关键字: 电容器 电力系统 电气设备

铝电解电容器是一种电容器,其外形主要为圆柱形,外壳有着金属材质的外观,内部则有电解液和铝箔片层。铝电解电容器广泛用于电子设备领域,如电源、光电子、自动控制等领域。

关键字: 电容器 铝电解电容

X电容是跨接在电源线的火线(L)和零线(N)之间的电容器。它主要用于降低差模干扰,即火线和零线之间的噪声。X电容通常采用金属化聚丙烯薄膜或聚酯薄膜制成,具有高耐压和自愈特性。其容量范围一般在0.01μF到10μF之间。Y...

关键字: 电容 电容器

7月16日消息,近日,由我国提出的《电力储能用超级电容器》国际标准提案在国际电工委员会(IEC)成功立项。

关键字: 电力 储能

在储能产业蓬勃发展的当下,储能电芯的技术革新成为了行业瞩目的焦点。近期,一场围绕储能电芯尺寸的激烈争论正在行业内掀起波澜,从早期的 280Ah、314Ah,一路发展到如今备受关注的 587Ah 与 684Ah 等大容量电...

关键字: 储能 电芯 卷绕工艺

近日,全球技术解决方案供应商艾睿电子(Arrow Electronics)推出在线全面储能方案专属资源平台,旨在为希望深入了解储能系统未来技术的用户提供全面而丰富的专业资源。

关键字: 储能 新能源

在电子设备的复杂电路体系里,电容器扮演着电荷存储与释放的关键角色。钽电容,作为电容器家族中的重要一员,凭借其体积小、容量大、稳定性高以及寿命长等突出特性,在众多电子设备中得到广泛应用。而当涉及到钽电容的精度时,不同精度的...

关键字: 电容器 钽电容 精度

2025 年,工商业储能正处于从政策驱动迈向价值驱动的关键转折点。在这一进程中,储能变流器(PCS)作为实现交直流转换的核心设备,逐渐占据行业变革的核心地位,凭借底层技术创新重塑工商储价值体系。

关键字: 储能 变流器 交直流转换
关闭