当前位置:首页 > 技术学院 > 技术前线
[导读]如果使用得当,缓存可以减少响应时间、减少数据库负载以及节省成本。但如果缓存使用不当,则可能出现一些莫名其妙的问题。在不同的场景下,所使用的缓存策略也是有变化的。

为什么有时候写入文件的内容却没有?没什么printf打印在终端的内容看不到?这一切背后有着怎样早为人知的秘密?今天来说说缓冲的事。也许你已经听说过三种缓冲模式,但是今天要讲的不止这些。

在系统架构中,缓存可谓提供系统性能的最简单方法之一,稍微有点开发经验的同学必然会与缓存打过交道,最起码也实践过。

如果使用得当,缓存可以减少响应时间、减少数据库负载以及节省成本。但如果缓存使用不当,则可能出现一些莫名其妙的问题。

在不同的场景下,所使用的缓存策略也是有变化的。如果在你的印象和经验中,缓存还只是简单的查询、更新操作,,那么这篇文章真的值得你学习一下。

缓冲

为了减少使用read和write调用的次数,标准IO库提供了缓冲,有人可能会问,为什么要减少它们的调用次数?很明显read和write是系统调用,它们花费的时间将会更多,本文不展开描述,可以参考《库函数和系统调用》。那么有哪三种缓冲类型呢?

全缓冲

在全缓冲的情况下,在填满标准I/O缓冲区后,才进行实际的I/O操作。写磁盘文件通常就是全缓冲的。举个例子:

buff.c*/

#include

#include

int main(void)

{

/*以可读可写的方式打开*/

FILE *fp = fopen("./test.txt","w+");

if(NULL == fp)

{

perror("open file failed");

return -1;

}

/*写入内容*/

char buf[] = "wechat:shouwangxiansheng\n";

fwrite(buf,sizeof(char),sizeof(buf),fp);

//fflush(fp);

/*sleep一段时间,以便观察*/

sleep(20);

fclose(fp);

return 0;

}

打开一个文件,并向里面写入一段字符串。我们编译并运行:

$ gcc -o buff buff.c

$ ./buff

此时观察test.txt:

$ cat test.txt

发现它的内容是空!明明已经写入了为什么会什么东西都没有?原因在于它默认是全缓冲的,因此在将内容写入文件后,并没有直接存在文件中,当程序关闭文件或者程序运行完成退出后,再次查看:

$ cat test.txt

wechat:shouwangxiansheng

发现文件已经有了内容。除了等待程序运行完成,还可以使用fflush函数,它可以将缓冲区中的内容写入到磁盘中(终端驱动设备表示丢弃缓冲区的数据)。所以将fwrite下面一行的注释去掉后,就可以发现,写入之后,就可以直接在文件中看到内容了。所以当你在写一个文件,但是查看文件却没有任何写入内容时,不要一直怀疑自己的代码。

行缓冲

行缓冲指的是当遇到换行符时,或者缓冲区已经满了(一般1024字节),标准I/O库执行I/O操作。同样举个例子:


lineBuff.c*/

#include

#include

int main(void)

{

printf("wechat:shouwangxiansheng");

sleep(10);

return 0;

}

编译运行上面的程序:

$ gcc -o lineBuff lineBuff.c

$ ./lineBuff

你会发现,printf执行完了之后,内容并没有马上输出到终端,而是在程序运行完之后才输出。聪明的你当然也知道,要想打印完后直接输出到终端,只需要改成下面这样就可以了:

printf("wechat:shouwangxiansheng\n");

不带缓冲

这个从字面就可以理解其意思了。同样举个例子:


noBuff.c*/

#include

#include

int main(void)

{

fprintf(stderr,"wechat:shouwangxiansheng");

sleep(10);

return 0;

}

编译运行你就会发现,运行完fprintf语句后,内容直接输出在终端,而不需要等到换行。一般来说,标准错误是不带缓冲的。

总结

通过上面的一些例子,我们也发现了这样一些规律:

通常磁盘上的文件是全缓冲区的标准输入和标准输入通常是行缓冲的指向终端设备的流通常是行缓冲,而指向文件时,则是全缓冲为了尽可能显示错误信息,标准错误是不带缓冲的

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭