当前位置:首页 > 模拟 > 模拟技术
[导读]在这篇文章中,小编将为大家带来IGBT的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

在这篇文章中,小编将为大家带来IGBT的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

一、IGBT开通延迟过程

1、IGBT栅极电容的组成

Ciss= CGE+ CGC 输入电容

Coss= CGC+ CEC 输出电容

Crss= CGC 米勒电容

下面是比较详细的电容分布

IGBT膝电压是什么?IGBT开通延迟过程详解

对于IGBT 器件,栅极电容包括四个方面电容,如上图所示:

(1)栅极—发射极金属电容C1

(2)栅极—N + 源极氧化层电容C2

(3)栅极—P 基区电容Cgp,Cgp由C3,C5构成;

(4)栅极—集电极电容Cgc,Cgc由C4,C6构成。其中,栅极—发射极电容( 也称为输入电容) 为Cge = C1 + C2 + Cgp,栅极—集电极电容( 也称为反向传输电容或密勒电容) 为Cgc。此外,Cgp随栅极电压的变化而变化,Cgc随IGBT 集射极电压的变化而变化。电容Cgp的变化趋势如下图 所示。因此,Cgp随着电压的增加,其电容值先减小,随着电压的进一步增加,其大小又逐渐增加,并达到稳定值。

IGBT膝电压是什么?IGBT开通延迟过程详解

2、开通延时过程中驱动回路等效电路

由于在IGBT 集电极电流上升之前, IGBT 仍然处于关断状态,栅极电压的变化量相对于IGBT的阻断电压可以忽略不计。因此,栅极电压的上升过程对于栅极—集电极电容( Cgc) 及其电荷量的影响可以忽略不计,因此开通延时阶段的充电过程只针对电容C1、C2和Cgp。因此,结合驱动回路的等效电路,可以得到上述充电过程中驱动回路的等效电路如下图所示

IGBT膝电压是什么?IGBT开通延迟过程详解

其中Vg为栅极驱动板输出电压,Rg为驱动电阻,Cin为驱动板输出端口电容,Rs和Ls分别为驱动回路寄生电阻和寄生电感。栅极电压开始上升一段时间后达到阈值电压,集电极电流开始上升,这个过程也称之为开通延迟,一般我们表示为td(on)。

基于上述分析可知,栅极电压在到达阈值电压之前,输入电容并不是恒定值,而是有一个由大逐渐变小,再逐步增大的过程。因此,在IGBT 开通过程中,驱动回路并不是给恒定电容充电。下图是开通过程栅极电压上升趋势

IGBT膝电压是什么?IGBT开通延迟过程详解

二、IGBT膝电压

膝电压是指在IGBT导通状态下,集电极与发射极之间的电压降,通常以Vce(sat)表示。在IGBT的工作过程中,膝电压是导通阶段IGBT的主要损耗之一,其大小直接影响着器件的效率和性能特点。因此,正确地理解和处理膝电压是确保IGBT正常工作和提高转换效率的关键之一。

膝电压的大小与多个因素有关。首先是IGBT的设计和制造工艺。采用不同的工艺和材料选择可能导致不同的膝电压水平。其次是工作温度。温度上升会增加载流子的热激活能量,减小导电通道的电阻,进而减小膝电压。此外,由于控制端电流的不足或者IGBT内部不均匀的电流分布,也会导致膝电压的增加。IGBT的膝电压对其性能和应用有重要影响。首先,膝电压影响着IGBT的开关速度。在IGBT切换过程中,膝电压会导致能量损耗,影响开关速度和效率。当膝电压较高时,即使控制端施加较高的电压,导通过程仍然存在较大的电阻,导致开关速度变慢。其次,膝电压对IGBT的损耗和散热也有直接影响。膝电压愈高,能耗和损耗也愈大,散热效果也较差。此外,膝电压还会影响IGBT的电流承受能力和耐压能力。为了降低膝电压,IGBT的制造技术和结构设计都在不断改进。例如,采用一些高压大电流IGBT芯片并行的方式,将电流分担到多个芯片中,从而减小膝电压和功耗。此外,设计师们还通过改变材料配比、改良导电通道结构等方法来改进IGBT的特性,以降低膝电压和提高工作效率。

经由小编的介绍,不知道你对IGBT是否充满了兴趣?如果你想对它有更多的了解,不妨尝试在我们的网站里进行搜索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭