当前位置:首页 > 模拟 > 模拟技术
[导读]比较器是能够实现比较两个输入端的电流或电压的大小这一功能的电路或者装置。

电子电路是由各种电子器件组成的,因此学习电子电路中,必须要熟悉各种电子器件性能,今天就给大家讲解比较器

一.比较器的定义

比较器是能够实现比较两个输入端的电流电压的大小这一功能的电路或者装置。它有两个输入端Vi+和Vi-,一个输出端Vout。输入端接的是模拟信号,输出端输出是的数字信号,输出要么是高要么就是低,具体的高电平是任意由外接的电压幅值来决定的。

选择其中输入端作为参考点(REF)来进行比较,例如选择同相输入端V2作为参考,当反相输入端V1大于V2时,Vout输出低电平;当V1小于V2时,Vout输出高电平。由此可知输出端的状态代表着两个输入之间的净差的符号,参考电压V2则称为比较器的阈值电压UT。由于比较器实际上是1位数模转换器(ADC),因而是ADC中的一个基本元件。

电压比较器的输出电压uo与输入电压ui的函数关系称为其电压传输特性,即uo=f (ui)。由于比较器与开环下的集成运放特性比较相似,不妨先回顾下运放的电压传输特性。

二.比较器的工作原理

比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。

由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。

三.比较器性能指标

1.0 滞回电压:比较器两个输入端之间的电压在过零时输出状态将发生改变,由于输入端常常叠加有很小的波动电压,这些波动所产生的差模电压会导致比较器输出发生连续变化,为避免输出振荡,新型比较器通常具有几mV的滞回电压。滞回电压的存在使比较器的切换点变为两个:一个用于检测上升电压,一个用于检测下降电压,电压门限(VTRIP)之差等于滞回电压(VHYST),滞回比较器的失调电压是TRIP 和VTRIP-的平均值。不带滞回的比较器的输入电压切换点为输入失调电压,而不是理想比较器的零电压。失调电压一般随温度、电源电压的变化而变化。通常用电源抑制比表示电源电压变化对失调电压的影响。

2.0 偏置电流:理想的比较器的输入阻抗为无穷大,因此,理论上对输入信号不产生影响,而实际比较器的输入阻抗不可能做到无穷大,输入端有电流经过信号源内阻并流入比较器内部,从而产生额外的压差。偏置电流(Ibias)定义为两个比较器输入电流的中值,用于衡量输入阻抗的影响。MAX917系列比较器的最大偏置电流仅为2nA。

3.0 超电源摆幅:为进一步优化比较器的工作电压范围,Maxim公司利用NPN管与PNP管相并联的结构作为比较器的输入级,从而使比较器的输入电压得以扩展,这样,其下限可低至最低电平,上限比电源电压还要高出250mV,因而达到超电源摆幅(Beyond-theRail)标准。这种比较器的输入端允许有较大的共模电压。4.0漏源电压:由于比较器仅有两个不同的输出状态(零电平或电源电压),且具有满电源摆幅特性的比较器的输出级为射极跟随器,这使得其输入和输出信号仅有极小的压差。该压差取决于比较器内部晶体管饱和状态下的发射结电压,对应于MOSFFET的漏源电压。

5.0 输出延迟时间:包括信号通过元器件产生的传输延时和信号的上升时间与下降时间,对于高速比较器,如MAX961,其延迟时间的典型值可对达到4.5ns,上升时间为2.3ns。设计时需注意不同因素对延迟时间的影响,其中包括温度、容性负载、输入过驱动等的影响。

四.比较器的应用电路

该电路采用光敏电阻控制分压电路。当该电路吸收强光时,输出设备将被关闭。当电路吸收黑暗时,输出设备将被关闭。该电路基于电压比较器原理工作。如果 IC 电压的反相端高于同相端,则输出设备激活。同样,如果 IC 的反相端电压低于同相端,则输出设备停用。此处,该电路使用 LED 作为输出设备。

该IC有两个电源输入,即Vcc和GND,其中Vcc是正电压电源,最高可达36V,GND是电压源的地线。电源通道可以用这两个端子完成,并为该操作提供电源。

3、工作原理

IC 通电后,比较电压值。如果反相端电压高于同相端电压,则运算放大器输出将接地,电流将从正电源流向 GND。同样,如果反相端的电压低于同相端,则运算放大器输出将保持在正电源电压 (Vcc),并且没有电流流动,因为负载两端没有电势差。

因此,当反相端的电压很高时,负载将被打开。当反相端电压低时,负载将被关闭。这里LED用作负载。使用LM393的小夜灯电路。该电路以LED作为负载,光敏电阻用于检测光线。光敏电阻的阻值主要取决于照射到其表面的光线。当光敏电阻检测到黑暗时,光敏电阻的阻值会变高,而当光敏电阻检测到亮光时,其阻值会降低。

因此,如果我们使用光敏电阻和固定电阻连接分压器电路,如果它检测到黑暗,则光敏电阻将利用更多电压,因为它在黑暗中的电阻较小。类似地,如果它检测到明亮的光线,则光敏电阻将使用较少的电压。

如果运放同相端的输入是一个比较稳定的参考电压,光敏电阻的电压在黑暗中高于参考电压,在光照下低于参考电压,这里设计了一个比较器当有夜晚然后有光时,电路的作用不同。因此,LED 会在黑暗中点亮,在强光下熄灭。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭