当前位置:首页 > 模拟 > 模拟技术
[导读]以下内容中,小编将对晶体管负反馈放大电路的相关内容进行着重介绍和阐述,希望本文能帮您增进对晶体管负反馈放大电路的了解,和小编一起来看看吧。

以下内容中,小编将对晶体管负反馈放大电路的相关内容进行着重介绍和阐述,希望本文能帮您增进对晶体管负反馈放大电路的了解,和小编一起来看看吧。

一、负反馈

1、负反馈的工作原理

负反馈的实现:在放大电路中,负反馈的实现通常通过在输出端和输入端之间引入一个反馈网络来实现。反馈网络可以是一个电阻、电容或者电感等元件。

负反馈的传递函数:负反馈的传递函数可以通过开环增益和反馈系数来计算。开环增益是指放大电路在没有负反馈的情况下的增益,而反馈系数是指反馈信号与输入信号的比值。

负反馈的稳定性条件:为了保证放大电路的稳定性,负反馈的传递函数必须满足一定的条件,即相位裕度和增益裕度。

2、负反馈的优点

降低非线性失真:负反馈可以有效地抑制放大电路的非线性失真,提高放大电路的线性度。

提高稳定性:负反馈可以减小放大电路的增益波动,提高放大电路的稳定性。

扩展带宽:负反馈可以增加放大电路的带宽,提高放大电路的频率响应。

减小噪声:负反馈可以减小放大电路的噪声,提高放大电路的信噪比。

减小温度漂移:负反馈可以减小放大电路的温度漂移,提高放大电路的可靠性。

3、负反馈的缺点

降低增益:引入负反馈会降低放大电路的增益。

引入相位失真:在某些情况下,负反馈可能会引入相位失真。

增加电路复杂度:引入负反馈会增加放大电路的复杂度,增加设计和调试的难度。

二、晶体管负反馈放大电路放大倍数的推导

我们假设的电路在没有负反馈的时候,电路增益为A(也称为开环增益,或者裸增益,等于各极增益的乘积)。实际放大倍数Av可以表示为:

这个公式可以推导出来,但推导的过程没有这么重要,我简单记录在这里,不理解也没有关系,因为后边使用到运算放大器的时候,“虚断”与“虚短”结合,即便不理解推导过程也不影响使用。

以下的所有推导过程都只考虑交流通路,因为放大的本来就是交流信号。

设输入信号Vi,输出信号为Vo,开环增益为A,实际增益为Av,其中 Av= Vo/Vi

分析R4与R5的连接点,电流的关系

电阻R4是反馈电阻,流过R4的电流i2可以表示为:

流过R5的电流i3可以表示为:

对于R4与R5连接点的电流情况分析,可知:

i1的理解比较麻烦,要假设电路是开环工作,没有负反馈,当输出电压为Vo的时候,应该输入的电压为Vi’。

Vi’=Vo/A

这个假想的输入电压在到达R4与R5的连接点的时候,感受到的电阻就是R4//R5

i1=(Vo/A)/(R4×R5/(R4+R5))

所以

Vi/R5=(Vo-Vi)/R4+(Vo/A)×((R4+R5)/(R4×R5))

整理成Vo/Vi的格式得到:

实用的放大倍数公式

R4是反馈电阻,令β=R5/(R4+R5),那么放大倍数可以表示为:

β表示有多少输出返回到了输入,称为反馈率。上述公式是非常重要的一个公式,不仅适用于此处的晶体管负反馈放大,也  能够应用到运算放大器中。如果认为开环增益A非常大,那么反馈率几乎就是放大倍数的倒数:

注意,前提是开环增益A非常大。因此电路设计中,要时刻注意,想办法让开环增益尽可能的大一些。

不难看出,省略的是上述公式中的i1,因为A很大,Vo一定,所以Vi’很小,所以就把i1忽略了。这也是使用运放芯片时所谓的“虚断”。认为由于i1这个电流太小所以忽略。

以上就是小编这次想要和大家分享的有关晶体管负反馈放大电路的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

由于科技不断地发展,晶体管的出现,上世纪六、七十年代电子管被晶体管的强大洪流冲走

关键字: 晶体管

CFP15B封装为DPAK封装的MJD系列提供更紧凑、更具成本效益的替代方案

关键字: 晶体管 铜夹片 PCB

放大电路的核心在于三极管,因此对三极管的基本了解至关重要。三极管可构成多种放大电路,此处我们仅聚焦于几种常见类型进行解析。图1所示即为一例共射基本放大电路。对于放大电路,我们需要掌握的关键内容包含:深入剖析电路中各元件的...

关键字: 三极管 放大电路

晶体管,作为现代电子技术的核心元件,其工作原理、分类及失效模式对于理解电子设备运行至关重要。

关键字: 晶体管

随着技术的飞速发展,商业、工业及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。本文致力于探讨高温对集成电路的影响,介绍高结温...

关键字: IC设计 集成电路 晶体管

绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

关键字: 晶体管

【2025年5月26日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出了一款能够主动双向阻断电压和电流的氮化镓(GaN)开关——650...

关键字: 微型逆变器 晶体管 氮化镓

在现代电子技术领域,MOS 管(金属 - 氧化物半导体场效应晶体管)作为一种关键的半导体器件,广泛应用于各类电路中。从智能手机到计算机主板,从电源管理到功率放大,MOS 管都扮演着不可或缺的角色。然而,对于许多电子技术初...

关键字: MOS 管 晶体管 半导体

两级功放通常由驱动级和末级组成。驱动级的作用是将输入信号进行初步放大,为末级功放提供足够的激励信号;末级功放则负责将驱动级送来的信号进一步放大,以输出足够的功率驱动负载。不同类型的功放,如 A 类、B 类、AB 类等,其...

关键字: 功放 晶体管 驱动负载

【2025年5月15日, 德国慕尼黑讯】随着AI数据中心的快速发展、电动汽车的日益普及,以及全球数字化和再工业化趋势的持续,预计全球对电力的需求将会快速增长。为应对这一挑战,英飞凌科技股份公司(FSE代码:IFX / O...

关键字: 氮化镓 功率模块 晶体管
关闭