当前位置:首页 > 技术学院 > 技术前线
[导读]对于电子设备来说,工作时都会产生一定的热量,从而使设备内部温度迅速上升,如果不及时将该热量散发出去,设备就会持续的升温,器件就会因过热而失效,电子设备的可靠性能就会下降。

随着电子设备性能的不断提升,散热问题成为了设计中不可忽视的一环。散热不良不仅会导致设备性能下降,还可能缩短设备的使用寿命。以下是十种提高PCB散热效率的策略。

对于电子设备来说,工作时都会产生一定的热量,从而使设备内部温度迅速上升,如果不及时将该热量散发出去,设备就会持续的升温,器件就会因过热而失效,电子设备的可靠性能就会下降。

在现代电子领域,随着器件尺寸的不断缩小和性能的不断提高,热管理问题日益凸显,不容忽视。电子设备在运行过程中产生的热量,如果处理不当,散发不了,就会像潜移默化的威胁一样,悄无声息地危及设备的稳定性和寿命。

电子设备在运行过程中会产生一定的热量,导致设备内部温度迅速升高。如果不及时散发这种热量,设备会继续发热,导致元件因过热而失效,从而降低电子设备的可靠性和性能,如何在源头验证PCB的可制造性就至关重要,这也是PCB制造的关键问题。

因此,有效管理电路板的散热至关重要。PCB的散热起着至关重要的作用,所以让我们讨论一些PCB散热技术。

广泛使用的散热PCB材料包括覆铜环氧玻璃布基板或酚醛树脂玻璃布基板,少数还使用纸基铜包板。

虽然这些基板具有优异的电气和加工性能,但它们的散热性很差。作为高发热元件的冷却方式,几乎不可能依靠PCB树脂本身的热传导,而是将热量从元件表面散发到周围的空气中。

但随着电子产品进入元器件小型化、高密度组装、高发热时代,仅仅依靠元器件的小表面积进行散热是远远不够的。

同时,由于QFP和BGA等表面贴装元件的广泛使用,电子元件产生的热量被广泛传递到PCB上。因此,解决散热问题的最有效方法是增强PCB与发热元件直接接触的固有散热能力,从而允许热量通过PCB传导或散发。

因此,对电路板进行很好的散热处理是非常重要的。PCB电路板的散热是一个非常重要的环节,那么PCB电路板散热技巧是怎样的,下面我们一起来讨论下。

01

通过PCB板本身散热目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。

这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。

但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。

同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。

1、利用PCB板材的散热潜力

尽管传统的PCB板材如覆铜环氧玻璃布基材在电气性能上表现出色,但其散热能力有限。为了应对高功率密度的挑战,现代PCB设计需要考虑板材的热传导性能。通过优化板材选择和布局,可以显著提高散热效率。

2、散热器和导热材料的应用

对于高功率器件,单纯的PCB散热可能不足以满足需求。这时,可以采用散热器或导热板来辅助散热。对于多个发热器件,可以考虑定制散热罩或平板散热器,并使用热相变导热垫来提高接触效率。

3、器件排列的优化

在设计PCB时,应根据器件的发热量和耐热性进行分区排列。将耐热性差的器件放置在冷却气流的上游,而将耐热性好的器件放置在下游,以实现更有效的热管理。

4、走线设计的策略

合理的走线设计对于散热同样重要。通过增加铜箔线路和导热孔,可以提高PCB的热传导效率。同时,计算PCB的等效导热系数,有助于评估和优化散热设计。

5、布局的细致调整

在PCB布局中,大功率器件应尽可能靠近边缘布置,以缩短热传导路径。在垂直方向上,应将这些器件布置在上方,以减少对其他器件的影响。

6、空气流动路径的规划

空气流动是PCB散热的关键。设计时应考虑空气流动路径,合理配置器件,避免在某些区域形成较大的空域,以促进空气流动。

7、敏感器件的安置

对于温度敏感的器件,应将其安置在温度较低的区域,避免直接放置在发热器件的上方,并在水平面上进行交错布局。

8、发热器件的散热优化

将功耗高和发热大的器件布置在散热条件最佳的位置附近,避免将它们放置在PCB的角落和边缘,除非有额外的散热装置。

9、避免热点的集中

在PCB设计中,应避免功率密度过高的区域,以防止热点的形成。通过均匀分布功率,可以保持PCB表面温度的均匀性。

10、创新散热技术的应用

除了传统的散热方法,还可以探索如热管、相变材料、微通道冷却等创新散热技术,以适应不断增长的散热需求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭