当前位置:首页 > 通信技术 > 通信技术
[导读]海洋、航空航天和国防应用以及天气雷达通常使用所谓的S波段雷达。S波段雷达通常以2-4 GHz的频率工作。由于波长和频率的原因,S波段雷达不容易衰减。

‌海洋、航空航天和国防应用以及天气雷达通常使用所谓的S波段雷达。S波段雷达通常以2-4 GHz的频率工作。由于波长和频率的原因,S波段雷达不容易衰减。这使得它们可用于近距离和远距离天气观测以及船上,以探测其他船只和陆地障碍物,并为避免碰撞和海上导航提供方位和距离。美国国家气象局(NWS)也使用S波段雷达。

雷达系统设计注意事项

S波段雷达系统的设计人员通常专注于改进尺寸、重量和功率(SWaP)。在本文中,我们将演示我们的新型Microchip 70W、ICP3049P、2.7–3.5 GHz功率放大器(PA)如何为在S波段运行的无线雷达系统提供业界最佳的SWaP性能和最高效率。

当雷达系统设计人员进行新设计或向现有平台添加功能时,他们会考虑许多参数。如果预期用例是移动的(机载、舰载或其他移动雷达系统),PCB面积和集成电路组件的选择/集成很快就会成为首要考虑因素。

前几代S波段雷达系统通常在2.7至3.1 GHz和3.1至3.5 GHz频段使用单独的PA。通常,每个频段使用相同的PA;但是,它使用外部组件对每个频段进行唯一匹配/调谐,以在频率上向上或向下移动响应。对于ICP3049P这样的器件,不再需要这种技术,因为整个频段被一个IC覆盖,从而消除了对这些外部元件的需求,从而节省了电路板空间。

随着相控阵天线雷达系统的日益普及,对PA提出了许多具有挑战性的要求。在确定相控阵雷达系统中使用的PA发射机系列的规格时,必须仔细考虑系统的要求。以下是一些必须遵守的常见设计注意事项和设计约束:

印刷电路板(PCB)区域在相控阵雷达中可能供不应求。这可能会导致辐射元件间距非常近,可能会产生器件间EMI问题或散热挑战。

将额外热量散发(吸收)到系统中的能力可能非常有限。

操作频率可能因雷达系统而异。例如,在S波段,可能需要在整个2.7至3.5 GHz频谱上运行。

雷达系统的可用直流功率因最终应用而异。与对移动雷达系统施加的更严格要求相比,固定地面雷达的直流电源和冷却通常是无限的。在固定雷达中,最好优化输出功率的PA,以增加范围,但代价是直流功耗和更复杂的冷却系统。在移动机箱中,PA可以针对PAE进行优化,以最大限度地降低功耗并简化冷却要求。

设计人员是否应该为功率放大器级选择MMIC或功率晶体管(带有外部匹配网络)。

MMIC 与分立功率晶体管

单片微波集成电路 (MMIC) 是在微波频率(300 MHz 至 300 GHz)下工作的 IC 器件。这些器件通常与 50 欧姆的特性阻抗匹配。这使得MMIC比单个RFMW功率晶体管更易于使用,因为您不需要外部匹配电路来级联MMIC,从而可以更轻松地将它们集成到上游和下游电路中。

对于工艺技术,砷化镓传统上是MMIC的理想材料,其中有源和基本无源元件可以在单个GaAs芯片上轻松生产。与GaAs相比,转向用于更高功率PA的GaN-on-SiC MMIC可以实现功耗和重量降低30%以上,这对系统设计人员和OEM来说是一个巨大的收益。

现在,使用MMIC器件作为PA而不是分立晶体管可以提供尺寸优势,因为MMIC将构建复杂系统所需的电路缩小到相对较小的封装,从而节省了设计人员的PCB面积。许多MMIC设计还集成了电磁干扰保护(EMI),这使设计人员无需在设计中集成这些附加电路。最后,也许关键是MMIC是否采用标准半导体“封装”;这使系统设计人员不必处理裸片的要求,裸片在业界普遍认为裸片比封装裸片更难在制造环境中加工。

分立式RFMW功率器件特别适用于放大电路中的PA模块,原因有几个重要,但通常物理尺寸(以及匹配网络的尺寸)更大。分立器件通常具有比MMIC器件高得多的输出功率能力。这意味着设计人员可能能够以更少的设备产生更多的功率。然而,我们认为ICP3049 MMIC标准功能能够在S波段维持70W,这往往会使分立功率晶体管的早期优势最小化。分立器件确实允许设计人员优化器件周围的匹配网络,并可能选择能够最大限度地提高特定应用的电路性能的PCB材料,但这对于更深奥的应用可能更理想,而不是那些每块板可能有×100个辐射元件的应用。最后,由于分立器件在板级匹配,因此设计团队能够以高效且比MMIC设计更省时的方式微调或修改设计性能。然而,随着许多类型的现代PA MMIC的可用性,到Ka频段及更高,这种优势变得更加专业化。

波段雷达放大器‌是指专为特定波段的雷达系统设计的功率放大器,用于放大接收到的雷达信号,并提供足够高的功率输出以确保信号的有效传输和探测。常见的波段包括L波段(1-2 GHz)和S波段(2-4 GHz),这些波段常用于航空、军事、气象和物流等领域‌1。

L波段雷达放大器

L波段雷达放大器设计用于工作在1-2 GHz频率范围的雷达系统。其主要特点是高增益、低噪声和快速响应,以满足脉冲雷达系统对高性能放大的需求。选择L波段雷达放大器时,需要考虑频率范围、功率输出、线性度、稳定性和可靠性等因素‌1。

S波段雷达放大器

S波段雷达放大器设计用于工作在2-4 GHz频率范围的雷达系统。S波段雷达通常用于海洋、航空航天和国防应用,以及天气雷达。由于波长和频率的原因,S波段雷达不容易衰减,适用于近距离和远距离天气观测以及船上使用,以探测其他船只和陆地障碍物。S波段雷达系统的设计人员通常专注于改进尺寸、重量和功率(SWaP)性能,以提高效率并节省电路板空间‌2。

应用场景

‌航空‌:用于飞机导航和避障。

‌军事‌:用于目标探测和跟踪。

‌气象‌:用于天气监测和预报。

‌物流‌:用于货物跟踪和库存管理。

技术参数和设计考虑因素

在选择或设计波段雷达放大器时,需要考虑以下技术参数和设计因素:

‌频率范围‌:确保放大器工作在目标波段内。

‌功率输出‌:提供足够的功率以确保信号的有效传输。

‌线性度‌:保持信号的线性特性,避免失真。

‌稳定性‌:在各种工作条件下保持性能稳定。

‌可靠性‌:确保长时间稳定运行。

‌尺寸、重量和功率(SWaP)‌:优化设计以适应不同的应用场景‌12。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭