当前位置:首页 > 芯闻号 > 美通社全球TMT
[导读]苏州2025年8月21日 /美通社/ -- 2025年7月,由博瑞医药联合AI药物设计平台予路乾行共同开发的候选药物BGM1812,正式发表于国际药物化学权威期刊《Journal of Medicinal Chemistry》。作为一款AMY3R与CTR的双重激动剂,BGM181...

苏州2025年8月21日 /美通社/ -- 2025年7月,由博瑞医药联合AI药物设计平台予路乾行共同开发的候选药物BGM1812,正式发表于国际药物化学权威期刊《Journal of Medicinal Chemistry》。作为一款AMY3R与CTR的双重激动剂,BGM1812在动物模型中不仅展现出显著的体重控制效果,更在长期给药下保持了良好的瘦体重指标,体现出"减脂不减肌"的药效特征。[1]

予路乾行AI技术助力博瑞医药打造新一代代谢干预药物BGM1812

 

JMC期刊发布

JMC期刊发布

在持续扩张的减重药物市场中,如何在有效减少体脂的同时,避免瘦体重流失,已成为新一代代谢干预药物设计的关键目标。

面向真实的减重需求

随着肥胖相关疾病负担持续加重,全球范围内对安全、有效的体重控制药物提出了更高要求。根据世界卫生组织(WHO)数据,2022年,有25亿年龄在18岁及以上的成人超重,其中包括超过8.9亿成人患有肥胖症。

近年来,GLP-1类药物在减重领域的快速发展极大推动了市场扩容。国际投行巨头摩根士丹利(Morgan Stanley)在其报告中指出,全球减重药物市场预计将于2035年达到1500亿美元规模。

在GLP-1类药物带动全球减重药物市场快速增长的同时,其广泛使用中也逐渐暴露出一个不可忽视的风险:显著的瘦体重下降。

因此,目前市场已逐步形成行业共识:真正具有长期治疗价值的减重药物,不应仅仅关注"体重下降",而要实现脂肪减少与肌肉保留的动态平衡。

如何在实现有效体重管理的同时,保留肌肉质量、维持代谢稳定性,成为当前减重药物设计中的关键挑战。BGM1812,正是在这一问题导向下提出的解决方案。

实验结果显示多维药效优势

BGM1812是在AI辅助分子筛选与分子动力学模拟指导下设计的一种新型双靶点多肽分子。予路乾行研究团队首先以Petrelintide为基础,采用分子动力学方法,发现其Ile(Me)24突变为Gly(Me)24后可形成BGM1802,进而显著提升抗聚集倾向。模拟结果进一步揭示,BGM1802在AMY3R与CTR的结合位点中,其L12、F15、L16三联疏水残基与受体内疏水残基可共同构建"疏水笼"结构,增强受体配体复合物的稳定性,并促进受体激活。

基于这一疏水笼机制,研究团队借助分子动力学模拟与AI自由能打分方法,对L12和F15残基进行了α‑碳甲基化修饰,成功设计出新一代分子BGM1812和BGM1813,进一步强化与受体的疏水相互作用。

这一设计策略也在后续实验中得到了充分验证:

  • 体外cAMP激活实验显示,BGM1812在AMY3R的EC₅₀由1.126 nM降至0.627 nM,在CTR的EC₅₀由4.995 nM降至2.270 nM,激动效价提升约50%。
  • 药代动力学实验中,大鼠单次皮下注射(1 mg/kg)后,BGM1812在36小时内展现出更高的初期血药浓度,虽然整体AUC与半衰期(t₁/₂)与Petrelintide相当,但在早期暴露量上具有明显优势。
  • 长期给药的DIO大鼠模型实验证明,在每3天注射一次、连续10次的给药方案下,BGM1812(0.04 mg/kg)带来了更显著的体重下降效果,且在脂肪减少的同时,更好地保留了瘦体重,具备"减脂不减肌"的代谢调节潜力。

分子动力学模拟中的稳定构象

分子动力学模拟中的稳定构象

服务于多靶点设计的实际需求

在BGM1812项目中,予路乾行提供了从靶点建模、构象预测、能量评价到结构优化的全过程建模支持。该平台基于多尺度分子动力学模拟与AI算法融合的核心框架,能够在项目早期识别结合机制关键残基、提出优化建议,并辅助完成成药性评估与候选结构筛选。

BGM1812的成功发表,是博瑞医药与予路乾行基于机制共识和临床问题导向开展深度协同的又一成果。对于平台方而言,这不仅是一次结构优化能力的验证,更是AI药物设计在多靶点代谢干预方向上的落地案例。

 

[1] 参考文献:Zong L, Zhang Z, Li X, Jia J, Jiang X, Wang Z, Liu W, Shen X, Feng X, Huang Y, Ding H, Song Y, Zheng Z, Yuan J, Li H. Discovery of BGM1812, a Novel Dual Amylin and Calcitonin Receptor Agonist for Obesity Treatment. J Med Chem. 2025 Jul 3. 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭