当前位置:首页 > 模拟 > 模拟
[导读]心电图 (ECG) 学是一门将心脏离子去极(ionic depolarization) 后转换为分析用可测量电信号的科学。模拟电子接口到电极/患者设计中最为常见的难题之一便是优化右腿驱动 (RLD) ,其目的是实现较高的共模性能和稳定性。

心电图 (ECG) 学是一门将心脏离子去极(ionic depolarization) 后转换为分析用可测量电信号的科学。模拟电子接口到电极/患者设计中最为常见的难题之一便是优化右腿驱动 (RLD) ,其目的是实现较高的共模性能和稳定性。利用 SPICE 分析,可大大简化这一设计过程。

 在 ECG 前端中,RLD 放大器具有 Vref 的共模电极偏置,并反馈经过反相处理的共模噪声信号 (enoise_cm),以降低测量放大器增益级输入端总噪声。图 1 中,源 ECGp 和 ECGn 被分离开,目的是表明 RLD 放大器如何为一部分 ECG信 号提供共模参考点,而这一部分 ECG 信号可在测量放大器 (INA) 的正负输入端看到。左臂、右臂和右腿的并联 RC 组合,代表了集总无源电极连接阻抗(本文后面部分以 52kΩ 和 47nf 表示)。假设 enoise 以寄生方式耦合至输入,则 enoise_cm 的反馈会降低每个输入端的总噪声信号,并使用外部方法过滤剩余噪声,或者利用测量放大器的共模抑制比 (CMRR) 来对其进行抑制。


图 1  LEAD I 和 RLD 简易连接

在图 2、3 和 4 中,我们可以看到共模抑制变化情况,表明共模测试电路具有不同的RLD 放大器增益。这些图表明,无反馈电阻器(即增益无限)时达到最佳低频 CMRR;但是,在现实世界中,对于那些要求在某条输入放大器引线被拔掉后 RLD 放大器仍能线性运行的应用来说,去除 DC 通路和/或将 RF 设置为某个高值或许并不实际。


图 2 CMRR 与 RLD 增益的关系


RF =100MΩ
RF =10MΩ
RF =1MΩ
RF =100kΩ
RF =10kΩ

图 3 CMRR 图与频率和 RLD 增益 (RF) 的关系


No RLD Drive

图 4   MCRR  RLD 与无 RLD 的关系


图 5 小信号脉冲测试电路


图 6   图5输出的曲线图

一旦确定 RLD 放大器的增益,便可使用图 5 所示测试电路,并在环路中注入一个小信号阶跃,然后监视输出响应情况。这时,响应(图 6 所示)显示出强输出振荡,表明环路中出现不稳定性。引起这种不稳定的主要反馈通路是 RLD 放大器周围的身体/电极/测量放大器反馈通路。图 7 所示测试电路,允许在一个波特图上单独分析 RLD 放大器的反馈和开环增益 (AOL) 曲线图。


图 7 电极/测量放大器反馈测试电路

图9所示 1/β(反馈)曲线图代表了图 7 模拟结果。请注意,在没有外部补偿网络时,1/β 曲线接近 AOL 曲线,且接近速率 (ROC) >20dB/dec,其表明存在不稳定性(证明过程,在此不作讨论)。要解决这个问题,需在 RLD 放大器的局部反馈中添加一个串联 Rc 和 Cc(图 9 所示 Zc),这样总 1/β 便与 AOL 曲线交叉,其接近速率 (ROC) ≤ 20dB/dec,且环路增益相补角> 45°(图 12)。之后,Zc 成为 20k-30kHz 之间的主要反馈通路。图 11 显示了这种新的、经过补偿之后的 1/β 图(基于 Rc 和 Cc 差异)。


图 8 补偿网络测试电路

图 9 AOL、1/β 和 Zc


图 10 补偿后的右腿驱动

 
图 11 不同 Cc 值的 AOL 和 1/β

 

图 12 图 10 的环路增益和相位

总之,SPICE 是一种有效的工具,可帮助快速分析和优化 RLD 前端电路的性能和稳定性。请记住,模型的好坏决定了模拟的质量,因此对一些重要规格建模就十分重要,例如:噪声、AOL、开环 Zout 以及 CMRR 与频率关系等。另外,这项工作应在开始分析和设计以前就完成。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭