当前位置:首页 > 智能硬件 > 智能硬件
[导读]基于Altera的CPLD器件的PCI总线仲裁器设计,实现仲裁器的AHDL编程,并结合仿真结果对PCI总线的仲裁进行了论述。

 作者Email:  jie_yi@sohu.com

        摘要:基于Altera的CPLD器件的PCI总线仲裁器设计,实现仲裁器的AHDL编程,并结合仿真结果对PCI总线的仲裁进行了论述。

    关键词:PCI仲裁器,CPLD,仿真

    PCI总线仲裁器通常是集成在PCI芯片组中。随着计算机应用的深入,尤其是嵌入式系统的不断发展,集成的仲裁器难以满足某些场合的应用。而采用CPLD技术实现的独立的PCI总线仲裁器,则较好的适应了这方面的需求。

    一﹑PCI总线仲裁机制

    PCI的仲裁是基于设备访问,而不是基于时间分配的。在任一时刻,总线上的一个主设备要想获得对总线的控制权,就必须发出它的请求信号(PCIreqN),如果此刻该设备有权控制总线,总线仲裁器就使该设备的总线占用允许信号(PCIgntN)有效,进而获得总线的使用权。当有多个主设备同时发出总线控制请求时,就必须由仲裁器根据一定的算法判定,当前应该由哪个主设备获得控制权。

    二、仲裁算法

    常用的仲裁算法有:公平算法、循环算法等。

    本仲裁器设计采用的是循环算法,设备的优先级预先设定。目前的设计实现对四个PCI设备请求的仲裁,各设备优先级由高到低安排为:设备0 >设备1 > 设备2 > 设备3。

    系统启动伊始,没有设备使用PCI总线,也没有设备请求使用PCI总线,仲裁器总是设定设备0拥有总线控制权,即将总线停靠于设备0。此时设备0的PCIgntN是有效的。而在此之后,仲裁器总是指定PCI总线的最后一个使用者为总线的停靠设备。

    当有一个或多个设备提出拥有总线使用权的请求时,仲裁器将按照事先安排的设备优先级顺序逐一查询。对于只有一个设备请求的情况,该设备的请求将会马上得到响应;如果多个设备同时发出请求时,仲裁器裁定首先响应优先等级高的设备的请求,当此设备完成数据传输交出总线使用权后,再由优先等级低的设备使用总线。示意框图见图2。

    如果一个设备已获得总线使用权并且正在进行地址、数据传输时,比它优先级别高的设备也发出了占用请求,仲裁器将会撤销优先级别低的设备的总线占用信号,并把总线使用权交给优先级别高的设备,同时还要确保在任一时刻不会出现多个设备同时占用总线的情况。具体见仿真分析。

    三、编程设计与实现

    本设计使用AHDL语言,在MaxplusII 10.0上编译通过,并进行了仿真。

    1. 仲裁器信号定义


SUBDESIGN  PCI_arb
(       -- 输入
PCIclk         :INPUT  -- PCI时钟
          Arbiter_rstN     :INPUT  -- 复位信号
          PCIreqN[3..0]    :INPUT  -- 总线占用请求信号
          frameN         :INPUT  -- 数据交易的启动或开始,主设备发出
          irdyN           :INPUT  --交易数据准备好,主设备发出
         
-- 输出
          PCIgntN[3..0]    :OUTPUT -- 总线占用允许信号
     )

    frameN和irdyN决定了总线的状态,只要两个信号中的一个有效,就表明总线上有数据通过,总线处于忙状态;当两个信号都无效时,则总线处于空闲状态。

2. 仲裁器状态机定义
parb_sm : MACHINE
  OF BITS ( PARB2 , PARB1 , PARB0 )
  WITH STATES (
    PARB_SLT0  = 0, -- PCIgnt0#有效,设备0拥有总线使用权,总线空闲
    PARB_SLT0D = 1, -- PCIgnt0#有效,数据在总线上传输,总线处于忙状态
    PARB_SLT1  = 2, -- 以下类同
    PARB_SLT1D = 3,
    PARB_SLT2  = 4,
    PARB_SLT2D = 5,
    PARB_SLT3  = 6,
PARB_SLT3D = 7 );

    3. 仲裁的实现

   由于采用循环算法,对每一个设备而言状态的变换都是相同的,下面仅以设备0的状态转换为例:
    CASE  parb_sm  IS
       WHEN PARB_SLT0 =>
           IF ( !frameN # !irdyN # frameN & irdyN & PARBtout4 ) THEN
              IF ( !PCIreqN1 ) THEN
                 PCIgntN1  = GND;
                 parb_sm   = PARB_SLT1D;
              ELSIF ( !PCIreqN2 ) THEN
                 PCIgntN2  = GND;
                 parb_sm   = PARB_SLT2D;
              ELSIF ( !PCIreqN3 ) THEN
                 PCIgntN3  = GND;
                 parb_sm   = PARB_SLT3D;
              ELSE
                 PCIgntN0  = GND;
                 parb_sm   = PARB_SLT0D;
           ELSE
              PCIgntN0  = GND;
              parb_sm   = PARB_SLT0D;
           END IF;

      WHEN PARB_SLT0D =>
          PCIgntN0    = GND;
           IF ( frameN & irdyN ) THEN
              parb_sm   = PARB_SLT0;
           ELSE
              Parb_sm   = PARB_SLT0D;
           END IF;
    
    为了避免AD线上和PAR线上出现时序竞争,一个设备的PCIgntN信号有效和另一个设备的PCIgntN的撤销,如果不是在总线空闲状态,则两者之间至少要有一个时钟的延迟。设计中,将每个设备占用总线的状态分为两部分,PARB_SLTx(总线空闲)和PARB_SLTxD(总线忙);状态机不能从一个设备的PARB_SLTxD状态直接转到另一个设备的PARB_SLTyD状态,中间必须经过至少一个时钟的PARB_SLTx状态的衔接,这样就避免了总线上竞争的出现。

    代码中,PARBtout为一5位计数器,对PCI时钟个数进行计数,用来判别设备发出请求信号后是否在规定时间内(16个时钟,即PARBtout[4..0] = 10000)占据了总线,启动了数据的传输;如果超时,则撤销该设备的请求信号,并按预设的优先级顺序,对其余设备总线使用权进行新一轮的裁定。计数器的编程实现:

IF ( PARBtout4 # PCIreqN0 & PCIreqN1 & PCIreqN2 & PCIreqN3 ) THEN
PARBtout [ ] = 0;
     ELSIF ( frameN & irdyN ) THEN
        PARBtout [ ] = PARBtout [ ] + 1;
     ELSE
        PARBtout [ ] = 0;
     END IF;

四、仿真分析

    1. 单一设备总线请求情况

    系统初始化后自动将总线停靠于设备0上,总线处于空闲状态,frameN、irdyN均为高电平。需要强调的一点是,仲裁所用的PCI控制信号均在PCI时钟信号的上升沿采样而得。如图3所示,设备2发出总线占用信号,仲裁器在时钟上升沿A处采样到该信号,并开始启动PARBtout计数,此时的frameN、irdyN为高电平,设备0仍然拥有总线使用权;随后设备2驱动使得frameN和irdyN有效,在时钟上升沿B处,仲裁器采样到frameN和irdyN,计数器清零,使设备2的PCIgntN2信号有效,从而占用总线,设备把地址、数据驱动到总线上,总线处于忙状态。

之后,设备2撤销其PCIreqN2信号,放弃对总线的占用;接着frameN、irdyN信号相继无效,表明数据传输的完成,总线变为空闲,仲裁器在C处采样后,将总线停靠在设备2上。

    2. 多个设备同时请求总线使用权(以两个设备为例)

    设备3首先发出请求信号,仲裁器在时钟A处采样后,计数器开始计数,此时总线仍然为设备0占用着;在时钟B处的采样,检测到frameN有效,表明数据传输的开始,仲裁器使得PCIgntN3信号有效,设备3获得总线所有权;

    在随后的一个时钟上升沿,仲裁器采样到设备2的总线请求信号,此时由于frameN、irdyN依然有效,表明数据传输正在进行中,必须等当前数据传输完成后,设备2才能占用总线进行自己的数据传输,此时仲裁器隐含设定设备2拥有总线使用权。设备3在时钟C之前使得frameN、irdyN无效,总线进入空闲状态,停靠在设备3上。设备2检测到总线空闲,驱动自己的frameN、irdyN信号,仲裁器在时钟D处采样到有效的frameN、irdyN信号后,使PCIgntN2有效,设备2占据总线,开始数据的传输。设备2使用完总线后,使总线回到空闲状态,停靠在设备2上;设备3检测到总线空闲,再次驱动frameN、irdyN有效,从而再次获得总线使用权(时钟上升沿F处)。所有传输完成后,总线将停靠在设备3上。

    值得一提的是,如果设备3在被迫交出总线前不能完成所有数据的传输,它必须使自己的PCIreqN3信号持续有效,这样在设备2用完总线后,仲裁器能将使用权交回,从而完成剩余数据的传输。

    图5为设备获得总线使用权,在设定的16个时钟周期内没有启动传输,仲裁器状态的变换。仍以两个设备为例。

    五、应用CPLD进行PCI总线仲裁器的设计,系统结构简单;配置灵活,可以根据系统的需要,对有关信号进行裁减或者扩展;在线修改方便。本设计采用Altera的EPM3064实现,并应用于所设计的系统板中。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭