当前位置:首页 > 工业控制 > 工业控制
[导读]0 背景机器人玩具控制系统的设计中对方向的控制尤其重要,直接体现了机器人玩具的控制精度和整体效果。在本文中要解决的问题就是控制好机器人的运动方向和球门之间的夹角,让其能够在运行中实时地自我调整,准确地把

0 背景

机器人玩具控制系统的设计中对方向的控制尤其重要,直接体现了机器人玩具的控制精度和整体效果。在本文中要解决的问题就是控制好机器人的运动方向和球门之间的夹角,让其能够在运行中实时地自我调整,准确地把球送入球门。

本文的课题背景是一个机器人玩具的控制系统设计,主芯片采用的是以摩特罗拉公司的MC86EZ328芯片,只完成与通信、运算等有关的主要操作,在没有操作时,由运行于其上的操作系统uClinux来维护。对于所有与EZ328的核心运算、控制、通信、操作无关的外围设备的维护和控制都通过一块AT89C52来完成,它与EZ328的底层通信协议为同步串口协议(SPI),在AT89C52中由软件来实现。C52包含的部件主要是A/D转换器,键盘接口,电机驱动模块。硬件结构电路图如下图1:

 

 

图1

1 磁阻传感器及其详细采集过程

1.1 磁阻传感器HMC1022简介

机器人玩具的方向控制的核心部件就是HMC1022两维磁阻微电路芯片,它的机构是四臂的惠斯通电桥,将磁场转化为差动输出的电压,可以检测低至85微高斯的磁场信号,这种低成本的传感器相比传统型号的同类产品具有更小的体积和更低的功耗。供电电源为3V-10V直流电压。本设计中采用的HMC0122采用的是16脚SOIC封装,集成了两路的惠斯通电桥,测出平面的X轴和Y轴的磁场信号,这样就可以获得水平面上方向的完整信号。

比较特殊的是Honeywell公司的这种磁阻传感器带有一个获得专利的置位/复位电路。

图2和图3分别是HMC1022内部电桥和置位/复位电路电路设计。

 

 

图2

 

 

图3

1.2 磁阻传感器工作原理

HMC的输出电压为磁场强度为0时传感器的输出。所以当U0为0时, Uout正比于磁场强度B。如图4,假设机器人处于水平面上,X为机器人行进方向,Y为水平面上垂直X的方向向右(即X顺时针转90),地里北极方向和地磁北极方向如图所示。H为地磁场,Hx、Hy分别是H在X、Y方向的水平分量, β为机器人行进方向和地磁北极方向的夹角, γ为地磁北极和地理北极方向的夹角,K就是机器人行进方向与地理北极方向之间的夹角,也就是我们最终要求的角度。(此处的β、γ、 K都是由前者出发顺时针到达后者的角度)由图可明显看出,K= β-γ。而在地球上不同方位的γ可查表得出,所以关键就是求得 。由磁阻传感器可以得出Hx、Hy,(此处忽略了机器人在Z轴方向的倾斜,所以二维传感器就够用了),。

 

 

图4

1.3 磁阻传感器信号采集模块电路设计

从HMC1022输出的电压信号非常微弱,我的测试是0到3mv(具体每个芯片的输出不是完全一致),需要经过放大器的放大,放大器选用的是AN622,放大倍数选定为600倍,这种放大器可以加上一个2.5v的偏置电压,所以输出到A/D的电压为2.5v+(0~3mv)*600,两路采集到的电压信号经过放大后连接到ADC0832。ADC0832是个两通道8位精度的逐次逼近式模数转换芯片,通过一个串行的I/O口DI输入一个MUX ADDRESS序列,来配置A/D成差分方式并选择哪一路通道的信号。2051通过一路I/O来串行读入转换后的数值。

用max662a作为RST/SET部分的恒压源,电路的工作原理及流程如下:

1. 由2051的14端(P1.7)输出高电平,SR电路set功能选通

2. 通过2051 P1各相应端子控制ADC0832,完成一次A/D转换,记下此次读入的电压值Vset 。

3. 2051的P1.7输出低电平,SR电路reset功能选通

4. 通过2051 P1各相应端子控制AD0832,完成一次A/D转换,记下此次读入的电压值Vrst

5. 求出1022的输出偏置电压V0=(Vset+Vrst)/2。

6. 通过2051控制AD0832完成A/D转换,将每一次读入的值Vrst减去V0就得到计算需要用的电压Vread=Vrst-V0;(包括两个轴方向的电压Vready、Vreadx)

7. 求得

8. K=β-γ, goto 6

经过2051处理后得出的数值,在时钟的配合下用一个I/O口模拟PWM输出,传给C52单片机

2 结束语

整个电路设计作为机器人玩具的可加载模块,在实际使用中的效果很好,对方向的分辩率完全满足在5度以内,从性价比来看,这种电路设计是比较成功的设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭