当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:在任意波形发生器设计中,DDS技术具有成本低、功耗小、分辨率高和切换时间快等优点,但波形形状任意可编辑性较差;软件无线电技术可产生任意复杂波形,但切换时间慢。采用DDS和软件无线电相结合的技术,正弦波

摘要:在任意波形发生器设计中,DDS技术具有成本低、功耗小、分辨率高和切换时间快等优点,但波形形状任意可编辑性较差;软件无线电技术可产生任意复杂波形,但切换时间慢。采用DDS和软件无线电相结合的技术,正弦波、三角波、方波等普通信号的产生用DDS实现;复杂无规则波形信号的产生用软件无线电实现;最后任意波形发生器通过渡形存储器相位累加器、取样时钟发生器、地址发生器等硬件平台设计和软件波形算法设计来共同完成。
关键词:任意波形发生器;直接数字频率合成;软件无线电;频率控制字;相位累加器

    任意波形发生器(AWG)是一种将想要产生的任意波形下载到仪器所带的存储器中,能存储实际的波形和形成这些波形所需的波形序列指令的信号发生器,改变波形数据可以产生任意波形。它不仅能产生正弦波、锯齿波、三角波等常规波形,也可以产生多种调制,如:调频、调幅、调相和脉调等。而且可以通过计算机软件实现波形的编辑,从而产生用户所需要的各种任意波形。

1 基础理论介绍
1.1 DDS的基本构造
    
作为任意波形发生器的一种设计方法,DDS基本构成如图1所示,主要由相位累加器、波形RAM、DAC以及低通滤波器等模块组成。首先输入频率控制字,经过相位累加器输出相位信息,波形查找表根据相位信息进行相位一幅度转换,得到的波形数据经过D/A和低通滤波后形成模拟波形信号。


    输出波形频率fo和频率控制字K、相位累加器位数n和取样时钟fc的关系为:
    
    由公式1可知,基于DDS技术的任意波形发生器输出信号的最高频率由相位累加器、波形RAM和D/A转换器三个模块工作速率决定。当存储芯片的存储深度一定,即累加器位数n一定时,输出信号频率fo由频率控制字K和采样时钟共同影响,且与这二者乘积成正比关系:
    fo∝Kxfc            (2)
    相位累加器以频率控制字K为输入进行累加,其输出为对波形数据RAM进行采样所需的地址信号,输入和输出的速率均由时钟控制。不难理解,采样时钟fc的上限即为波形数据RAM的最高读取速率,当采用的RAM芯片最高读取频率一定时,fc的最大值已经确定,由公式(2)可知,这时要想提高fo的值,必须从K值着手。当K越大时,一个波形中被采样的点数就越少。根据奈奎斯特采样定理
    
    即一个完整波形中至少要采样两个离散波形数据,才能保证在后续处理中完整的重现这个信号,因此K值的增大是有上限的。
    采用DDS技术设计的任意波形发生器具有频率分辨率高、频率跳变时相位连续、实现方便等优点,但也存在不足。首先是当累加相位步进较大时,输出波形容易产生抖动;其次由于DDS技术只是抽取波形存储器中的部分数据,因此输出波形会产生一定的失真。
1.2 软件无线电产生任意波形的原理
    
任意波形发生器的另外一种设计原理如图2所示,其工作原理是利用软件产生波形数据下载到存储器中,通过时钟计数器累加来改变寻址电路的输出地址,计数器逐个扫描波形存储器的每一个地址直到存储器的末端,地址中的波形数据被送到D/A转换器将数字信号转换为模拟信号,而后输出信号经过低通滤波器对信号的电平阶跃进行平滑处理得到需要的波形。在这种设计方案中,所有存储器中的波形数据都被送入D/A转换器中,所以失真较小。但要全部输出存储器中的波形数据内容,并且输出信号的频率任意可变,那么采样时钟的频率就需要可编辑,这点与DDS构成的波形发生器有着明显的区别。采用该设计方案的任意波输出频率:
    
    式中fs为采样时钟频率。使用该设计方案的电路结构简洁,能够输出的波形比较复杂,对于用户可任意编辑的波形发生器最为适合。



2 产生任意波形的电路设计
    
图3表示了任意波形发生器的硬件原理框图。对于正弦波、方波、三角波等普通波形,采用直接数字频率合成(DDS)技术来设计,这是基于幅度和相位的映射关系,通过改变频率控制字来改变相位累加器的步进量,求和后的相位在固定采样时钟下取样,得到同相位序列对应的幅度序列,幅度序列再通过D/A转换就可以得到模拟信号输出。通过频率控制字进行相位累加来控制频率,在相位和幅度的对应关系中,通过改变存储器中的波形数据就可以选择各种波形(包括正弦波、三角波、锯齿波等)。AM调制的过程在数学上可以描述为载波信号与调制信号在时域上的乘积,在实现过程中调幅深度可以表述为调制信号与载波信号幅度峰-峰值的相对大小,因此可以通过调整调制信号幅度的峰-峰值就可以控制调幅深度。FM调制的原理是基于调制信号幅度与载波信号频率的对应关系,因此只需要把调制信号幅度叠加到载波信号的频率控制字上,就可以实现FM调制,在实现过程中其频偏是由调制信号幅度的峰-峰值决定。


    对于较为复杂的波形,硬件电路由取样时钟发生器、寻址发生器、RAM存储器、高速D/A、波形数据产生软件和数据导入接口等组成。它的工作原理是通过计算机软件将要产生的波形数据存入RAM存储器中,然后通过寻址发生器改变RAM存储器的地址,逐个扫描存储器的地址直到RAM存储的末段。每个地址对应的波形数据被送入高速D/A,输出信号经过重建滤波后放大输出。任意波信号产生的质量由D/A采样率、垂直分辨率、波形存储深度、采样时钟信号质量等多种因素决定,而且整体人机交互软件的设计决定了使用的方便性和功能的完备性。

3 结束语
    
目前,任意波形发生器的发展趋势是硬件模块化、通用化、平台化,利用软件无线电来形成各种复杂调制信号。一方面在频响、杂散、谐波、数据交换速度、连续转换速率、动态范围等硬件指标上更加精益求精;另一方面在数据编码、数字滤波、FFT或IFFT变换、数字加噪、信号模拟、电平幅度、输出方式等软件处理方面更加集成,在统一软件视窗中通过点选发生器就采用模块化硬件和集成软件来实现,在统一数据接口的情况下,软硬件可以分开来并行设计,使得AWG的研制更加专业化,以提高AWG的性能和指标。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭