当前位置:首页 > 通信技术 > 通信技术
[导读]引言 SPI-4.2总线(System Packet Interface,系统间数据包接口)是一种速度高达10 Gb/s的芯片间互连总线,主要应用于ATM信元传输、POS(Packet Over SONET/SDH,基于SONET/SDH的包传输)和10 Gb/s以太网等高端

引言
    SPI-4.2总线(System Packet Interface,系统间数据包接口)是一种速度高达10 Gb/s的芯片间互连总线,主要应用于ATM信元传输、POS(Packet Over SONET/SDH,基于SONET/SDH的包传输)和10 Gb/s以太网等高端场合。特别在通信领域,很多高端处理器和网络处理器,如Intel公司的IXP2800、Cavium公司的多内核处理器CN58xx系列、NetLogic公司的XLR732、Broadcom的BCM1480,几乎都集成了SPI-4.2接口,以提高芯片的吞吐能力,适应通信产业朝着LTE(长期演进)发展的需求。还有众多的物理层芯片,例如Cortina公司的CS1331,可以将SPI-4.2总线转换成8个千兆以太网接口。SPI-4.2总线之所以被众多的高端芯片所采用,与其高速、灵活、可靠的特性是密不可分的。

1 SPI-4.2总线基本原理
    SPI-4.2总线是一种芯片间的互连总线,连接芯片的链路层和物理层模块。其工作时钟是源同步双边沿触发时钟,至少为311 MHz。图1是使用SPI-4.2总线连接两个芯片的示意图。可见,SPI-4.2总线的信号在发送和接收方向完全对称而又互相独立,数据链路和状态链路分开,并且其时钟也是完全分开的。因此,该总线不仅适合于双向通道,而且适合于只收不发或者只发不收的单向通道。


    SPI-4.2总线具有以下特点:
    ①点对点互连,收发数据链路宽度为16位。
    ②发送和接收模块的信号各分为两组,即数据信号和状态信号,分别对应数据链路和状态链路,每个链路具有自己的时钟。数据链路发送和接收数据,状态链路传输相应链路的状态信息。
    ③数据链路包含DCLK、DAT[15:0]和CTL三种LVDS(低压差分传输)信号。前面加“T”表示信号属于发送模块,加“R”表示信号属于接收模块。以发送模块为例,TDCLK是双边沿触发时钟,TCTL是控制信号,TDAT[15:0]承载了数据和控制信息。当TCTL为高电平时,TDAT[15:0]传送的是数据包;当TCTL为低电平时,TDAT[15:0]传送的是控制包。数据采用DIP~4校验交织码。
    ④状态链路包括SCLK时钟信号和STAT[1:0]状态信号,信号类型是LVTTL或LVDS。SPI~4.2发送时序如图2所示。如果选择LVTTL,则SC-LK时钟频率是数据链路时钟速率的1/4。如果选择LVDS,则SCLK时钟频率和数据链路时钟频率相同。下文中均以LVDS为例进行阐述。状态链路主要用于流控。


    ⑤接收和发送模块都含有一个FIFO队列,用于缓存数据,队列长度由芯片设计而定。队列的状态信息通过状态链路周期性地发送,接收模块和发送模块的状态信息是独立的。状态信息附加了DIP-2交织校验码,以提高传输可靠性。


    除了数据包中最后一段不满16字节的数据(EOP)之外,SPI-4.2总线的数据实行突发传输,以16字节为单位(称为一个数据块),每次传输多个数据块。因为数据宽度是16位,所以一次突发传输至少需要4个时钟周期。数据的高地址位字节先发送(MSB),低地址位字节后发送,数据块传输过程中不会被中断。每次突发传输的间隔期间传送控制包或者训练序列。图2中,TDAT表示数据块,TCTRL表示控制块。控制包长度为16位,包含了前次传输和下次传输的状态信息:包开始标志、包结束标志、逻辑端口地址和DIP-4交织校验码等。数据链路遵循有限状态机进行工作,状态包括5种:控制包传输、数据包传输、空闲包传输、训练序列传输以及训练序列控制。
    因为状态链路的宽度是2位,所以每次突发传输至少传输16位数据(4个时钟周期)。反映FIFO队列的状态信息有3种:饱(Satisfied)、饿(Hungry)、极饿(Starving),分别对应二进制数字10、01和00。11表示链路处于失步状态,正在同步过程中。当状态是“饱”时,说明队列几乎满了,只接收当前正在传送的数据包,其他数据包只有等状态更新后才能接收。当状态是“饿”时,可以接收最大MaxBurst2个数据块。当状态是“极饿”时,说明队列几乎空了,可以接收最大MaxBurst1个数据块。MaxBurst1和MaxBurst2是SPI-4.2总线初始化时设定的参数,MaxBurst1不得小于MaxBurst2。

2 SPI-4.2总线的初始化和同步
    SPI-4.2总线初始化时必须设定一些基本参数,如表1所列。


    SPI-4.2总线协议定义了一个叫“日历”的数据结构CALENDAR[i](i=1,…,CALENDAR_LEN)。CALENDAR_LEN(日历长度)参数规定了逻辑端口(或称为虚拟通道)的数目,该数值不能小于实际的逻辑端口数目。例如,如果SPI-4.2总线用于10 Gb/s以太网口,那么日历长度是1(即CALENDAR_LEN=1);如果SPI-4.2总线用于10个1 Gb/s以太网口,那么日历长度是10(CALENDAR_LEN=10),CALENDAR[i]=1,2,…,10,代表了10个以太网端口。CALENDAR[i]中承载的数据被周而复始地依次传输,重复次数是CALENDAR_M次。图3为日历长度和重复次数都是4的数据传输示意图。SPI-4.2总线被初始化时,必须确保接口两端的CALENDAR_LEN和CALENDAR_M分别相等。从这个角度看,SPI-4.2是一种时分复用的总线:总带宽是固定的,“日历”数据结构决定了带宽和逻辑端口的分配。
    当SPI-4.2正常工作时,数据和状态链路会不定期地发送训练序列。在数据链路,训练序列至少应该在DATA_MAX_T个时钟周期内发送一次。在状态链路,训练序列至少应该在FIFO_MAX_T个时钟周期内发送一次。设置DATA_MAX_T或FIFO_MAX_T为0将取消各自链路的训练序列,一般情况下不推荐这种设置。
    图4以XLR732为参照描述了SPI-4.2总线的收发同步过程。启动之后,在发送方向,发送模块(TX)通过数据链路发送连续的训练序列,对端的接收模块成功收到训练序列后,会设置本端的接收同步标志;然后通过状态链路发送训练序列给对端,一旦发送模块成功接收到训练序列后,就设置本端的发送同步标志。


    在接收方,接收模块(RX)在数据链路成功接收到对端发送的训练序列后,会设置本端的接收同步标志;然后通过状态链路发送训练序列,一旦发送模块成功接收到训练序列后,就设置本端的发送同步标志。
    在同步过程中,训练序列由指定的连续的DIP-4码字组成。发送模块必须连续发送训练序列,直到本端的状态链路收到有效信息。同时,接收模块忽视所有接收到的数据,直到观察到训练序列,获得数据同步。一旦数据链路同步之后,FIFO队列状态信息就开始传送。如果发送
方接收到有效的状态信息,它就可以开始进行数据突发传输。
    如果在工作过程中,由于某些原因(例如一端器件掉电或重启)导致总线失步,那么为了再次获得同步,双方需要按照上述过程发送连续的训练序列,直到建立同步为止。

3 SPI-4.2总线接口的调试
    SPI-4.2总线接口的调试包括两个重要步骤:链路的同步和数据的正常收发。
    在调试链路同步时,首先必须查看总线两端的初始化参数配置。因为SPI-4.2总线协议是一个对等端数据传输协议,所以大部分参数需要双方的匹配和协商,特别是接收方和发送方的CALENDAR_LEN和CALENDAR_M参数。
    如何查看同步呢?芯片通常会提供一个状态寄存器来反映总线的同步。“接收同步标志”只能说明在数据链路上成功接收到对端的训练序列,但不能保证接收的状态链路是正常的,如果需要确认可查看对端的“发送同步标志”。在收发双向通道应用中,只有两端的“接收同步标志”和“发送同步标志”都置位了,总线才算同步。此时,可以确认总线两端的物理连接是正确的,握手成功。
    如果不能同步,就必须检查两端的“接收同步标志”和“发送同步标志”,判断是哪一端出了问题。检查是否有DIP4和DIP2错误,如果有此类错误,说明链路上信号质量可能不佳,可以用示波器测量信号波形。如果信号质量确实不好,可以通过提高信号驱动能力或者调整硬件匹配阻抗来优化。如果两端的接收和发送都没有同步,就必须测量芯片的电压、工作频率、重启等信号。
    如果两端的“接收同步标志”和“发送同步标志”都已经置位,说明双方的接收和发送都同步,可以正常收发数据了。在大流量数据传输过程中,最相关的是FIFO队列的参数配置,配置不当会导致错包或丢包。以NetLogic公司的XLR732网络处理器为例,SPI-4.2总线的发送模块的所有逻辑端口共享一个FIFO队列,宽度为16字节,长度为128;接收模块的所有逻辑端口共享一个FIFO队列,宽度为16字节,长度为512。每个逻辑端口所占用的队列地址和大小都可以通过寄存器配置。
    假如某个端口接收端队列的长度是48,MaxBurst1是12,MaxBurst2是8。那么当该模块接收数据时,如果由于某些原因(例如软件来不及处理),接收队列只剩下12个空位,也就是接收队列已经有48-12=36个空位被占用时,它将通过状态链路向对端发送“饿”的状态信号(反压信号)。对端收到该信号后实施流控策略,根据本端发送端的MaxBurst1设置值发送数据,该值表示接收到“饿”状态信号后最多还可以发送的数据块数目。所以接收端的MaxBurst1的值一定要大于对端发送端的MaxBurst1,并且要留出一定的余量,因为数据在链路上的传输也是需要时间的。同理,接收端的MaxBurst2要大于对端发送端的MaxBurst2。值得注意的是,流控是基于逻辑端口的,而不是整条链路。
    为保证不发生接收端FIFO队列溢出等问题,尽量将接收端的MaxBurst1和MaxBurst2设置大一些,只要小于FIFO入口总数就可以,而发送端MaxBurst1和MaxBurst2的设置不要超过本端接收能力。
    如果出现EOP(结束包)和SOP(起始包)错误或缺失,或者其他错包(例如包长变短、帧校验错误等),但没有DIP4错误,该怎么办?这类问题一般出现在FIFO队列设置上,尤其是接收端的FIFO队列可能溢出,从而丢失了某些数据块,可以通过以下3种方法来检测和解决:
    ①通过查看接收端FIFO溢出标志来判断FIFO队列是否溢出;
    ②通过调整接收端的MaxBurst1和MaxBurst2来防止FIFO队列溢出;
    ③如果方法②的调整足够大,还有此问题,可以查看对端是否收到反压信号,以及对端的状态等。
    为了方便,通常将发送端的MaxBurst1和MaxBurst2设置为相同数值,将接收端的MaxBurst1和MaxBurst2也设置成相同数值。

结语
    随着处理器的速度越来越快,处理器集成的内核越来越多,处理器与外围器件之间,处理器之间,以及外围器件之间的连接速度逐渐成为制约平台性能的瓶颈。许多芯片同时集成了多个总线接口,例如XLR732同时拥有SPI-4.2、HT、以太网3种总线接口。SPI-4.2总线在与其
他总线的竞争中体现出了强大的生命力,希望本文所介绍的经验对正在应用或计划应用SPI-4.2总线的同行有所帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

作者 Mohamad Ali| IBM咨询首席运营官 北京2024年5月24日 /美通社/ -- 生成式AI的兴起几乎在所有面向上给业务带来改变。根据 IBM 商业价值研究院最新的年度 CEO 研究,近60%...

关键字: IBM AI BSP 模型

台北2024年5月21日 /美通社/ -- 提供针对AMD WRX90和TRX50主板优化的DDR5 OC R-DIMM 提供容量128GB(16GBx8)到768GB(96GBx8),速度5600MHz到8...

关键字: AMD 内存 BSP GB

在现代汽车电子系统中,CAN(Controller Area Network)总线技术因其高可靠性、高速率及灵活性而得到广泛应用。CAN总线采用差分信号传输方式,确保信号在传输过程中的抗干扰能力。然而,在某些特殊应用场合...

关键字: CAN 总线 差分输出

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP
关闭
关闭